51 research outputs found
Near real-time bed modelling feasibility study
Hospital bed management is crucial to ensure that patients do not have to wait for the right bed for their care. A simulation model has been developed that mimics the bed management rules applied to the Trauma & Orthopaedic wards of a busy Welsh hospital. The model includes forecasting methodologies to predict the number of emergency admissions, split by gender. The model uses near real-time admission data to see whether patients will be admitted to a given ward on a given day in a 7-day planning horizon. The one-week feasibility pilot study examined the accuracy and usability of the tool. The study has shown that it is possible to correctly predict the short-term processes of a Trauma & Orthopaedic bed management system by accurately forecasting arrivals, using known data and statistical distributions to predict patient length of stay, and applying generic bed management rules to dictate their placement
Recommended from our members
Examining the effects of sodium ions on the binding of antagonists to dopamine D2 and D3 receptors
Many G protein-coupled receptors have been shown to be sensitive to the presence of sodium ions (Na+). Using radioligand competition binding assays, we have examined and compared the effects of sodium ions on the binding affinities of a number of structurally diverse ligands at human dopamine D2 and dopamine D3 receptor subtypes, which are important therapeutic targets for the treatment of psychotic disorders. At both receptors, the binding affinities of the antagonists/inverse agonists SB-277011-A, L,741,626, GR 103691 and U 99194 were higher in the presence of sodium ions compared to those measured in the presence of the organic cation, N-methyl-D-glucamine, used to control for ionic strength. Conversely, the affinities of spiperone and (+)-butaclamol were unaffected by the presence of sodium ions. Interestingly, the binding of the antagonist/inverse agonist clozapine was affected by changes in ionic strength of the buffer used rather than the presence of specific cations. Similar sensitivities to sodium ions were seen at both receptors, suggesting parallel effects of sodium ion interactions on receptor conformation. However, no clear correlation between ligand characteristics, such as subtype selectivity, and sodium ion sensitivity were observed. Therefore, the properties which determine this sensitivity remain unclear. However these findings do highlight the importance of careful consideration of assay buffer composition for in vitro assays and when comparing data from different studies, and may indicate a further level of control for ligand binding in vivo
Functional selectivity of adenosine receptor ligands
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as Ξ²-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the Ξ²-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins
Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus
Adenosine and ATP, via their specific P1 and P2 receptors, modulate a wide variety of cellular and tissue functions, playing a neuroprotective or neurodegenerative role in brain damage conditions. Although, in general, adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, recent data suggest the existence of a heterodimerization and a functional interaction between P1 and P2 receptors in the brain. In particular, interactions of adenosine A1 and P2Y1 receptors may play important roles in the purinergic signalling cascade. In the present work, we investigated the subcellular localization/co-localization of the receptors and their functional cross-talk at the membrane level in Wistar rat hippocampus. This is a particularly vulnerable brain area, which is sensitive to adenosine- and ATP-mediated control of glutamatergic transmission. The postembedding immunogold electron microscopy technique showed that the two receptors are co-localized at the synaptic membranes and surrounding astroglial membranes of glutamatergic synapses. To investigate the functional cross-talk between the two types of purinergic receptors, we evaluated the reciprocal effects of their activation on their G protein coupling. P2Y1 receptor stimulation impaired the potency of A1 receptor coupling to G protein, whereas the stimulation of A1 receptors increased the functional responsiveness of P2Y1 receptors. The results demonstrated an A1βP2Y1 receptor co-localization at glutamatergic synapses and surrounding astrocytes and a functional interaction between these receptors in hippocampus, suggesting ATP and adenosine can interact in purine-mediated signalling. This may be particularly important during pathological conditions, when large amounts of these mediators are released
Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human Ξ²-adrenoceptors
The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human Ξ²-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity Ξ²-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of -9.53 and -8.46 as an antagonist of functional Ξ²2- and Ξ²1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human Ξ²2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent Ξ²2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]-butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol. 1983, 5, 430-437.
Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks
The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed
Hearing conservation guidance for the performing arts
Six guidelines to help organisations protect performersβ hearing, developed as a collaboration of the British Association for Performing Arts Medicine and Healthy Conservatoires
- β¦