201 research outputs found

    Transcriptome and proteome profiling reveals stress-induced expression signatures of imiquimod-treated Tasmanian devil facial tumor disease (DFTD) cells

    Get PDF
    As a topical cancer immunotherapy, the toll-like receptor 7 ligand imiquimodactivates tumor regression via stimulation of immune cell infiltration and cytotoxicresponses. Imiquimod also exerts direct pro-apoptotic effects on tumor cells invitro, but a role for these effects in imiquimod-induced tumor regression remainsundefined. We previously demonstrated that cell lines derived from devil facial tumordisease (DFTD), a transmissible cancer threatening the survival of the Tasmaniandevil (Sarcophilus harrisii), are sensitive to imiquimod-induced apoptosis. In thisstudy, the pro-apoptotic effects of imiquimod in DFTD have been investigated usingRNA-sequencing and label-free quantitative proteomics. This analysis revealedthat changes to gene and protein expression in imiquimod treated DFTD cells areconsistent with the onset of oxidative and endoplasmic reticulum stress responses,and subsequent activation of the unfolded protein response, autophagy, cell cyclearrest and apoptosis. Imiquimod also regulates the expression of oncogenic pathways,providing a direct mechanism by which this drug may increase tumor susceptibilityto immune cytotoxicity in vivo. Our study has provided the first global analysis ofimiquimod-induced effects in any tumor cell line. These findings have highlightedthe potential of cell stress pathways as therapeutic targets in DFTD, and will allowfor improved mechanistic use of imiquimod as a therapy in both the Tasmanian deviland human cancers

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Relations Among Anhedonia, Reinforcement Learning, and Global Functioning in Help-seeking Youth

    Get PDF
    Dysfunction in the neural circuits underlying salience signaling is implicated in symptoms of psychosis and may predict conversion to a psychotic disorder in youth at clinical high risk (CHR) for psychosis. Additionally, negative symptom severity, including consummatory and anticipatory aspects of anhedonia, may predict functional outcome in individuals with schizophrenia-spectrum disorders. However, it is unclear whether anhedonia is related to the ability to attribute incentive salience to stimuli (through reinforcement learning [RL]) and whether measures of anhedonia and RL predict functional outcome in a younger, help-seeking population. We administered the Salience Attribution Test (SAT) to 33 participants who met criteria for either CHR or a recent-onset psychotic disorder and 29 help-seeking youth with nonpsychotic disorders. In the SAT, participants must identify relevant and irrelevant stimulus dimensions and be sensitive to different reinforcement probabilities for the 2 levels of the relevant dimension ("adaptive salience"). Adaptive salience attribution was positively related to both consummatory pleasure and functioning in the full sample. Analyses also revealed an indirect effect of adaptive salience on the relation between consummatory pleasure and both role (αβ = .22, 95% CI = 0.02, 0.48) and social functioning (αβ = .14, 95% CI = 0.02, 0.30). These findings suggest a distinct pathway to poor global functioning in help-seeking youth, via impaired reward sensitivity and RL

    Exploiting inflammation for therapeutic gain in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC

    Patient-reported outcome measures for monitoring primary care patients with depression: the PROMDEP cluster RCT and economic evaluation.

    Get PDF
    BACKGROUND: Guidelines on the management of depression recommend that practitioners use patient-reported outcome measures for the follow-up monitoring of symptoms, but there is a lack of evidence of benefit in terms of patient outcomes. OBJECTIVE: To test using the Patient Health Questionnaire-9 questionnaire as a patient-reported outcome measure for monitoring depression, training practitioners in interpreting scores and giving patients feedback. DESIGN: Parallel-group, cluster-randomised superiority trial; 1 : 1 allocation to intervention and control. SETTING: UK primary care (141 group general practices in England and Wales). INCLUSION CRITERIA: Patients aged ≥ 18 years with a new episode of depressive disorder or symptoms, recruited mainly through medical record searches, plus opportunistically in consultations. EXCLUSIONS: Current depression treatment, dementia, psychosis, substance misuse and risk of suicide. INTERVENTION: Administration of the Patient Health Questionnaire-9 questionnaire with patient feedback soon after diagnosis, and at follow-up 10-35 days later, compared with usual care. PRIMARY OUTCOME: Beck Depression Inventory, 2nd edition, symptom scores at 12 weeks. SECONDARY OUTCOMES: Beck Depression Inventory, 2nd edition, scores at 26 weeks; antidepressant drug treatment and mental health service contacts; social functioning (Work and Social Adjustment Scale) and quality of life (EuroQol 5-Dimension, five-level) at 12 and 26 weeks; service use over 26 weeks to calculate NHS costs; patient satisfaction at 26 weeks (Medical Informant Satisfaction Scale); and adverse events. SAMPLE SIZE: The original target sample of 676 patients recruited was reduced to 554 due to finding a significant correlation between baseline and follow-up values for the primary outcome measure. RANDOMISATION: Remote computerised randomisation with minimisation by recruiting university, small/large practice and urban/rural location. BLINDING: Blinding of participants was impossible given the open cluster design, but self-report outcome measures prevented observer bias. Analysis was blind to allocation. ANALYSIS: Linear mixed models were used, adjusted for baseline depression, baseline anxiety, sociodemographic factors, and clustering including practice as random effect. Quality of life and costs were analysed over 26 weeks. QUALITATIVE INTERVIEWS: Practitioner and patient interviews were conducted to reflect on trial processes and use of the Patient Health Questionnaire-9 using the Normalization Process Theory framework. RESULTS: Three hundred and two patients were recruited in intervention arm practices and 227 patients were recruited in control practices. Primary outcome data were collected for 252 (83.4%) and 195 (85.9%), respectively. No significant difference in Beck Depression Inventory, 2nd edition, score was found at 12 weeks (adjusted mean difference -0.46, 95% confidence interval -2.16 to 1.26). Nor were significant differences found in Beck Depression Inventory, 2nd Edition, score at 26 weeks, social functioning, patient satisfaction or adverse events. EuroQol-5 Dimensions, five-level version, quality-of-life scores favoured the intervention arm at 26 weeks (adjusted mean difference 0.053, 95% confidence interval 0.013 to 0.093). However, quality-adjusted life-years over 26 weeks were not significantly greater (difference 0.0013, 95% confidence interval -0.0157 to 0.0182). Costs were lower in the intervention arm but, again, not significantly (-£163, 95% confidence interval -£349 to £28). Cost-effectiveness and cost-utility analyses, therefore, suggested that the intervention was dominant over usual care, but with considerable uncertainty around the point estimates. Patients valued using the Patient Health Questionnaire-9 to compare scores at baseline and follow-up, whereas practitioner views were more mixed, with some considering it too time-consuming. CONCLUSIONS: We found no evidence of improved depression management or outcome at 12 weeks from using the Patient Health Questionnaire-9, but patients' quality of life was better at 26 weeks, perhaps because feedback of Patient Health Questionnaire-9 scores increased their awareness of improvement in their depression and reduced their anxiety. Further research in primary care should evaluate patient-reported outcome measures including anxiety symptoms, administered remotely, with algorithms delivering clear recommendations for changes in treatment. STUDY REGISTRATION: This study is registered as IRAS250225 and ISRCTN17299295. FUNDING: This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 17/42/02) and is published in full in Health Technology Assessment; Vol. 28, No. 17. See the NIHR Funding and Awards website for further award information

    Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils

    Get PDF
    Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the 'infectious' agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.Research support was provided by the Australian Research Council (ARC Linkage grant #LP0989727, ARC Discovery grant #DP130100715), University of Tasmania Foundation through funds raised by the Save the Tasmanian Devil Appeal. J.M.M. acknowledges fellowship support (APP1105754) and L.M.C. Program Grant funding (APP1054925) from NHMRC. J.M.M. and L.M.C. acknowledge NHMRC IRIISS (9000220) and Victorian Government Operational Infrastructure Support. Y.C. and K.B. are supported by the Australian Research Council (ARC Discovery grant #DP140103260). K.B. is funded by an ARC Future Fellowship. J.K. is supported by a Wellcome Trust programme Grant (089305)

    Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions

    Get PDF
    Parthenogenetic embryos are one attractive alternative as a source of embryonic stem cells, although many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. The present work was conducted to investigate the gene expression profile of rabbit parthenote embryos cultured under in vivo conditions using microarray analysis. Transcriptomic profiles indicate 2541 differentially expressed genes between parthenotes and normal in vivo fertilised blastocysts, of which 76 genes were upregulated and 16 genes downregulated in in vivo cultured parthenote blastocyst, using 3 fold-changes as a cut-off. While differentially upregulated expressed genes are related to transport and protein metabolic process, downregulated expressed genes are related to DNA and RNA binding. Using microarray data, 6 imprinted genes were identified as conserved among rabbits, humans and mice: GRB10, ATP10A, ZNF215, NDN, IMPACT and SFMBT2. We also found that 26 putative genes have at least one member of that gene family imprinted in other species. These data strengthen the view that a large fraction of genes is differentially expressed between parthenogenetic and normal embryos cultured under the same conditions and offer a new approach to the identification of imprinted genes in rabbit. © 2012 Naturil-Alfonso et al.This work was supported by Generalitat Valenciana research programme (Prometeo 2009/125). Carmen Naturil was supported by Generalitat Valenciana research programme (Prometeo 2009/125). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Naturil Alfonso, C.; Saenz De Juano Ribes, MDLD.; Peñaranda, D.; Vicente Antón, JS.; Marco Jiménez, F. (2012). Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions. PLoS ONE. 7(12):1-11. https://doi.org/10.1371/journal.pone.0051271S111712Harness, J. V., Turovets, N. A., Seiler, M. J., Nistor, G., Altun, G., Agapova, L. S., … Keirstead, H. S. (2011). Equivalence of Conventionally-Derived and Parthenote-Derived Human Embryonic Stem Cells. PLoS ONE, 6(1), e14499. doi:10.1371/journal.pone.0014499Lu, Z., Zhu, W., Yu, Y., Jin, D., Guan, Y., Yao, R., … Zhou, Q. (2010). Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders. Journal of Assisted Reproduction and Genetics, 27(6), 285-291. doi:10.1007/s10815-010-9408-5Koh, C. J., Delo, D. M., Lee, J. W., Siddiqui, M. M., Lanza, R. P., Soker, S., … Atala, A. (2009). Parthenogenesis-derived multipotent stem cells adapted for tissue engineering applications. Methods, 47(2), 90-97. doi:10.1016/j.ymeth.2008.08.002Vrana, K. E., Hipp, J. D., Goss, A. M., McCool, B. A., Riddle, D. R., Walker, S. J., … Cibelli, J. B. (2003). Nonhuman primate parthenogenetic stem cells. Proceedings of the National Academy of Sciences, 100(Supplement 1), 11911-11916. doi:10.1073/pnas.2034195100Chen, Z., Liu, Z., Huang, J., Amano, T., Li, C., Cao, S., … Liu, L. (2009). Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells, 27(9), 2136-2145. doi:10.1002/stem.158Sritanaudomchai, H., Ma, H., Clepper, L., Gokhale, S., Bogan, R., Hennebold, J., … Mitalipov, S. (2010). Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Human Reproduction, 25(8), 1927-1941. doi:10.1093/humrep/deq144Fang, Z. F., Gai, H., Huang, Y. Z., Li, S. G., Chen, X. J., Shi, J. J., … Sheng, H. Z. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Experimental Cell Research, 312(18), 3669-3682. doi:10.1016/j.yexcr.2006.08.013Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., … Ji, W. (2007). Generation and Characterization of Rabbit Embryonic Stem Cells. Stem Cells, 25(2), 481-489. doi:10.1634/stemcells.2006-0226Piedrahita, J. A., Anderson, G. B., & BonDurant, R. H. (1990). On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology, 34(5), 879-901. doi:10.1016/0093-691x(90)90559-cNaturil-Alfonso, C., Saenz-de-Juano, M. D., Peñaranda, D. S., Vicente, J. S., & Marco-Jiménez, F. (2011). Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Animal Reproduction Science, 127(3-4), 222-228. doi:10.1016/j.anireprosci.2011.08.005Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.xMehaisen, G. M. K., Viudes-de-Castro, M. P., Vicente, J. S., & Lavara, R. (2006). In vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatment in rabbit does. Theriogenology, 65(7), 1279-1291. doi:10.1016/j.theriogenology.2005.08.007Bilodeau-Goeseels, S., & Schultz, G. A. (1997). Changes in Ribosomal Ribonucleic Acid Content Within in Vitro-produced Bovine Embryos1. Biology of Reproduction, 56(5), 1323-1329. doi:10.1095/biolreprod56.5.1323Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207Weltzien, F.-A., Pasqualini, C., Vernier, P., & Dufour, S. (2005). A quantitative real-time RT-PCR assay for European eel tyrosine hydroxylase. General and Comparative Endocrinology, 142(1-2), 134-142. doi:10.1016/j.ygcen.2004.12.019Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xLiu, N., Enkemann, S. A., Liang, P., Hersmus, R., Zanazzi, C., Huang, J., … Liu, L. (2010). Genome-wide Gene Expression Profiling Reveals Aberrant MAPK and Wnt Signaling Pathways Associated with Early Parthenogenesis. Journal of Molecular Cell Biology, 2(6), 333-344. doi:10.1093/jmcb/mjq029Abdoon, A. S., Ghanem, N., Kandil, O. M., Gad, A., Schellander, K., & Tesfaye, D. (2012). cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology, 77(6), 1240-1251. doi:10.1016/j.theriogenology.2011.11.004Labrecque, R., & Sirard, M.-A. (2011). Gene expression analysis of bovine blastocysts produced by parthenogenic activation or fertilisation. Reproduction, Fertility and Development, 23(4), 591. doi:10.1071/rd10243Rizos, D., Clemente, M., Bermejo-Alvarez, P., de La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences ofIn VitroCulture Conditions on Embryo Development and Quality. Reproduction in Domestic Animals, 43, 44-50. doi:10.1111/j.1439-0531.2008.01230.xLonergan, P., Rizos, D., Kanka, J., Nemcova, L., Mbaye, A., Kingston, M., … Boland, M. (2003). Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction, 337-346. doi:10.1530/rep.0.1260337Memili, E., & First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 8(1), 87-96. doi:10.1017/s0967199400000861Latham, K. E. (2001). Embryonic genome activation. Frontiers in Bioscience, 6(3), d748-759. doi:10.2741/a639Niemann, H., & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology, 53(1), 21-34. doi:10.1016/s0093-691x(99)00237-xCorcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., … Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction, 131(4), 651-660. doi:10.1530/rep.1.01015Morison, I. M., Ramsay, J. P., & Spencer, H. G. (2005). A census of mammalian imprinting. Trends in Genetics, 21(8), 457-465. doi:10.1016/j.tig.2005.06.008Bischoff, S. R., Tsai, S., Hardison, N., Motsinger-Reif, A. A., Freking, B. A., Nonneman, D., … Piedrahita, J. A. (2009). Characterization of Conserved and Nonconserved Imprinted Genes in Swine1. Biology of Reproduction, 81(5), 906-920. doi:10.1095/biolreprod.109.078139Cruz-Correa, M., Zhao, R., Oveido, M., Bernabe, R. D., Lacourt, M., Cardona, A., … Giardiello, F. M. (2009). Temporal stability and age-related prevalence of loss of imprinting of the insulin-like growth factor-2 gene. Epigenetics, 4(2), 114-118. doi:10.4161/epi.4.2.7954Park, C.-H., Uh, K.-J., Mulligan, B. P., Jeung, E.-B., Hyun, S.-H., Shin, T., … Lee, C.-K. (2011). Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos. PLoS ONE, 6(7), e22216. doi:10.1371/journal.pone.0022216Thurston, A., Taylor, J., Gardner, J., Sinclair, K. D., & Young, L. E. (2007). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction, 135(1), 29-40. doi:10.1530/rep-07-0211Li, Y., & Sasaki, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Research, 21(3), 466-473. doi:10.1038/cr.2011.15Mamo, S., Gal, A., Polgar, Z., & Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Molecular Biology, 9(1), 67. doi:10.1186/1471-2199-9-67Navarrete Santos, A., Tonack, S., Kirstein, M., Pantaleon, M., Kaye, P., & Fischer, B. (2004). Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction, 128(5), 517-526. doi:10.1530/rep.1.0020

    Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic ductal adenocarcinoma is a lethal disease with a 5-year survival rate of 4% and typically presents in an advanced stage. In this setting, prognostic markers identifying the more agrressive tumors could aid in managment decisions. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3, also known as IMP3 or KOC) is an oncofetal RNA-binding protein that regulates targets such as insulin-like growth factor-2 (IGF-2) and ACTB (beta-actin).</p> <p>Methods</p> <p>We evaluated the expression of IGF2BP3 by immunohistochemistry using a tissue microarray of 127 pancreatic ductal adenocarcinomas with tumor grade 1, 2 and 3 according to WHO criteria, and the prognostic value of IGF2BP3 expression.</p> <p>Results</p> <p>IGF2BP3 was found to be selectively overexpressed in pancreatic ductal adenocarcinoma tissues but not in benign pancreatic tissues. Nine (38%) patient samples of tumor grade 1 (n = 24) and 27 (44%) of tumor grade 2 (n = 61) showed expression of IGF2BP3. The highest rate of expression was seen in poorly differentiated specimen (grade 3, n = 42) with 26 (62%) positive samples. Overall survival was found to be significantly shorter in patients with IGF2BP3 expressing tumors (P = 0.024; RR 2.3, 95% CI 1.2-4.8).</p> <p>Conclusions</p> <p>Our data suggest that IGF2BP3 overexpression identifies a subset of pancreatic ductal adenocarcinomas with an extremely poor outcome and supports the rationale for developing therapies to target the IGF pathway in this cancer.</p
    • …
    corecore