483 research outputs found

    3-D SPH simulations of colliding winds in eta Carinae

    Full text link
    We study colliding winds in the superluminous binary eta Carinae by performing three-dimensional, Smoothed Particle Hydrodynamics (SPH) simulations. For simplicity, we assume both winds to be isothermal. We also assume that wind particles coast without any net external forces. We find that the lower density, faster wind from the secondary carves out a spiral cavity in the higher density, slower wind from the primary. Because of the phase-dependent orbital motion, the cavity is very thin on the periastron side, whereas it occupies a large volume on the apastron side. The model X-ray light curve using the simulated density structure fits very well with the observed light curve for a viewing angle of i=54 degrees and phi=36 degrees, where i is the inclination angle and phi is the azimuth from apastron.Comment: 6 pages, 3 figures, To be published in Proceedings of IAU Symposium 250: Massive Stars as Cosmic Engines, held in Kauai, Hawaii, USA, Dec 2007, edited by F. Bresolin, P.A. Crowther & J. Puls (Cambridge University Press

    Individualized Hydration Plans Improve Performance Outcomes for Collegiate Athletes Engaging in In-Season Training

    Get PDF
    Background: Athletes commonly consume insufficient fluid and electrolytes just prior to, or during training and competition. Unlike non-athletes or athletes who do not engage in frequent rigorous and prolonged training sessions, “hard trainers” may require additional sodium and better benefit from a hydration plan tailored to their individual physiology. The purpose of this randomized cross-over study was to determine whether a hydration plan based off of an athlete’s sweat rate and sodium loss improves anaerobic and neurocognitive performance during a moderate to hard training session as well as heart rate recovery from this session. Methods: Collegiate athletes who were injury free and could exercise at ≥ 75% of their maximum heart rate for a minimum of 45 min were recruited for this randomized, cross-over study. After completing a questionnaire assessing hydration habits, participants were randomized either to a prescription hydration plan (PHP), which considered sweat rate and sodium loss or instructed to follow their normal ad libitum hydration habits (NHP) during training. Attention and awareness, as well as lower body anaerobic power (standing long jump) were assessed immediately before and after a moderate to hard training session of ≥ 45 min. Heart rate recovery was also measured. After a washout period of 7 days, the PHP group repeated the training bout with their normal hydration routine, while the NHP group were provided with a PHP plan and were assessed as previously described. Results: Fifteen athletes from three different sports, aged 20 ± 0.85 years, participated in this study. Most participants reported feeling somewhat or very dehydrated after a typical training session. Compared to their NHP, participants following a PHP jumped 4.53 ± 3.80 in. farther, tracked moving objects 0.36 ± 0.60 m/second faster, and exhibited a faster heart rate recovery following a moderate to hard training session of 45–120 min in duration. Conclusion: A tailored hydration plan, based on an athlete’s fluid and sodium loss has the potential to improve anaerobic power, attention and awareness, and heart rate recovery time

    X-ray Modeling of \eta\ Carinae and WR140 from SPH Simulations

    Full text link
    The colliding wind binary (CWB) systems \eta\ Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we model the wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations. Adiabatic simulations that account for the absorption of X-rays from an assumed point source at the apex of the wind-collision shock cone by the distorted winds can closely match the observed 2-10keV RXTE light curves of both \eta\ Car and WR140. This point-source model can also explain the early recovery of \eta\ Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of \eta\ Car. Our more recent models relax the point-source approximation and account for the spatially extended emission along the wind-wind interaction shock front. For WR140, the computed X-ray light curve again matches the RXTE observations quite well. But for \eta\ Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiatively-driven wind acceleration via a new anti-gravity approach into the SPH code are also discussed.Comment: 5 pages, 3 figures, Proceedings of the 39th Li\'ege Astrophysical Colloquium, held in Li\`ege 12-16 July 2010, edited by G. Rauw, M. De Becker, Y. Naz\'e, J.-M. Vreux, P. William

    Constraints on decreases in Eta Carinae's mass loss from 3D hydrodynamic simulations of its binary colliding winds

    Get PDF
    Recent work suggests that the mass-loss rate of the primary star (Eta A) in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present results from large- (r=1545au) and small- (r=155au) domain, 3D smoothed particle hydrodynamic (SPH) simulations of Eta Car's colliding winds for 3 Eta A mass-loss rates (2.4, 4.8, and 8.5 x 10^-4 M_sun/yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling, and radiative forces. We find that Eta A's mass-loss rate greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star (Eta B) switches from the adiabatic to the radiative-cooling regime during periastron passage. The SPH simulations together with 1D radiative transfer models of Eta A's spectra reveal that a factor of 2 or more drop in Eta A's mass-loss rate should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in Eta A's mass-loss rate was likely by a factor < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line-of-sight to the system lies close to the dense walls of the WWC zone. A modest decrease in Eta A's mass-loss rate may be responsible, but changes in the wind/stellar parameters of Eta B cannot yet be fully ruled out. We suggest observations during Eta Car's next periastron in 2014 to further test for decreases in Eta A's mass-loss rate. If Eta A's mass-loss rate is declining and continues to do so, the 2014 X-ray minimum should be even shorter than that of 2009.Comment: 38 pages, 25 figures, 1 table. Accepted for publication in MNRA

    An X-ray investigation of the NGC 346 field in the SMC (3): XMM-Newton data

    Full text link
    We present new XMM-Newton results on the field around the NGC346 star cluster in the SMC. This continues and extends previously published work on Chandra observations of the same field. The two XMM-Newton observations were obtained, respectively, six months before and six months after the previously published Chandra data. Of the 51 X-ray sources detected with XMM-Newton, 29 were already detected with Chandra. Comparing the properties of these X-ray sources in each of our three datasets has enabled us to investigate their variability on times scales of a year. Changes in the flux levels and/or spectral properties were observed for 21 of these sources. In addition, we discovered long-term variations in the X-ray properties of the peculiar system HD5980, a luminous blue variable star, that is likely to be a colliding wind binary system, which displayed the largest luminosity during the first XMM-Newton observation.Comment: 19 pages, 5 figures (in gif), accepted by ApJ, also available from http://vela.astro.ulg.ac.be/Preprints/P89/index.htm

    Suzaku monitoring of hard X-ray emission from η carinae over a single binary orbital cycle

    Get PDF
    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 1011 cm-3 s-1. The NEI plasma increases in importance toward periastron

    Discovery of Extremely Embedded X-ray Sources in the R Coronae Australis Star Forming Core

    Full text link
    With the XMM-Newton and Chandra observatories, we detected two extremely embedded X-ray sources in the R Corona Australis (R CrA) star forming core, near IRS 7. These sources, designated as XB and XA, have X-ray absorption columns of ~3e23 cm-2 equivalent to AV ~180 mag. They are associated with the VLA centimeter radio sources 10E and 10W, respectively. XA is the counterpart of the near-infrared source IRS 7, whereas XB has no K-band counterpart above 19.4 mag. This indicates that XB is younger than typical Class I protostars, probably a Class 0 protostar or in an intermediate phase between Class 0 and Class I. The X-ray luminosity of XB varied between 29<log LX <31.2 ergs s-1 on timescales of 3-30 months. XB also showed a monotonic increase in X-ray brightness by a factor of two in 30 ksec during an XMM-Newton observation. The XMM-Newton spectra indicate emission from a hot plasma with kT ~3-4 keV and also show fluorescent emission from cold iron. Though the X-ray spectrum from XB is similar to flare spectra from Class I protostars in luminosity and temperature, the light curve does not resemble the lightcurves of magnetically generated X-ray flares because the variability timescale of XB is too long and because variations in X-ray count rate were not accompanied by variations in spectral hardness. The short-term variation of XB may be caused by the partial blocking of the X-ray plasma, while the month-long flux enhancement may be driven by mass accretion.Comment: 26 pages, 8 figures, To be published in ApJ in April 200
    corecore