3,800 research outputs found

    The Role of Geoengineering in Field Development

    Get PDF

    Modeling of radiation damage in silicon solar cells

    Get PDF
    One MeV electron irradiation produces preponderantly isolated vacancy interstitial pairs. If neither of these defects is mobile, the concentration of each grows linearly with fluence. Annealing of damage depends on the nature of the damage. Vacancy interstitial pairs which are bound by an interaction such that they mutually annihilate rather than dissociate are termed close pairs; close pair recovery usually occurs at a lower temperature than the temperature at which long distance defect migration occurs. Annealing of the remaining frozen in damage occurs when a temperature is reached where the vacancy or interstitial is mobile; usually the interstitial is more mobile than the vacancy. The recovery occurs in two regimes which may be resoluable

    The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Get PDF
    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets

    High injection and carrier pile-up in lattice matched InGaAs/InP PN diodes for thermophotovoltaic applications

    Get PDF
    This article analyzes and explains the observed temperature dependence of the forward dark current of lattice matched In0.53Ga0.47As on InP diodes as a function of voltage. The experimental results show, at high temperatures, the characteristic current-voltage (I-V) curve corresponding to leakage, recombination, and diffusion currents, but at low temperatures an additional region is seen at high fields. We show that the onset of this region commences with high injection into the lower-doped base region. The high injection is shown by using simulation software to substantially alter the minority carrier concentration profile in the base, emitter and consequently the quasi-Fermi levels (QFL) at the base/window and the window/cap heterojunctions. We show that this QFL splitting and the associated electron "pile-up" (accumulation) at the window/emitter heterojunction leads to the observed pseudo-n=2 region of the current-voltage curve. We confirm this phenomenon by investigating the I-V-T characteristics of diodes with an InGaAsP quaternary layer (E-g=1 eV) inserted between the InP window (E-g=1.35 eV) and the InGaAs emitter (E-g=0.72 eV) where it serves to reduce the barrier to injected electrons, thereby reducing the "pile-up." We show, in this case that the high injection occurs at a higher voltage and lower temperature than for the ternary device, thereby confirming the role of the "accumulation" in the change of the I-V characteristics from n=1 to pseudo-n=2 in the ternary latticed matched device. This is an important phenomenon for consideration in thermophotovoltaic applications. We, also show that the activation energy at medium and high voltages corresponds to the InP/InGaAs conduction band offset at the window/emitter heterointerface

    Processing Multi-Spectral Scanning Electron Microscopy Images for Quantitative Microfabric Analysis

    Get PDF
    Multi-spectral image analysis is a powerful method to characterise quantitatively the mineralogy and microfabric of soils, sediments, and other particulate materials. Backscattered scanning electron microscope (SEM) images of polished, resin-impregnated samples are grouped with the corresponding X-ray elemental maps using classification methods commonly used in remote sensing. However, the resulting mineral-segmented images require processing to render them suitable for quantification. In the past, this has been done subjectively and interactively, but the new objective methods described in this paper largely eliminate this subjectivity. An intensity gradient magnitude image of the original backscattered electron image is used as the basis of an interactive erosion and dilation sequence to generate skeleton outlines defining the edges of the mineral grains. The areas defined within the skeleton areas are then classified as a particular mineral according to the predominant feature in the corresponding mineral-segmented image. Subsequent processing tackles the problems of \u27holes\u27 defined by the skeleton outlines, and the over-segmentation associated with certain classes of mineral grain. Further methods to deal with particles made up of more than one mineral are considered. The matrix and porosity information is recombined to generate an image suitable for analysis using feature size statistics or general orientation analysis. The techniques described can be combined to permit batch processing of images. Applications of the techniques are illustrated on a soil from the East Anglian Breckland

    Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst

    Full text link
    The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is analyzed in terms of different variations of the homogeneous leptonic jet model for the production of high-energy radiation from blazars. We find that a two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and an external Compton component, is required in order to yield an acceptable fit to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other BL Lac objects, the broad emission line region plays an important role for the high-energy emission. Several alternative blazar jet models are briefly discussed. In the appendix, we describe the formalism in which the process of Comptonization of reprocessed accretion disk photons is treated in the previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal. Significantly extended discussion w.r.t. original version. 3 Figures included using epsf.sty, rotate.st

    Moving from a Product-Based Economy to a Service-Based Economy for a More Sustainable Future

    Get PDF
    Traditionally, economic growth and prosperity have been linked with the availability, production and distribution of tangible goods as well as the ability of consumers to acquire such goods. Early evidence regarding this connection dates back to Adam Smith's Wealth of Nations (1776), in which any activity not resulting in the production of a tangible good is characterized as unproductive of any value." Since then, this coupling of economic value and material production has been prevalent in both developed and developing economies throughout the world. One unintended consequence of this coupling has been the exponential increase in the amount of solid waste being generated. The reason is that any production and consumption of material goods eventually generates the equivalent amount of (or even more) waste. Exacerbating this problem is the fact that, with today's manufacturing and supply chain management technologies, it has become cheaper to dispose and replace most products rather than to repair and reuse them. This has given rise to what some call a disposable society." To put things in perspective: In 2012 households in the U.K. generated approximately 22 thousand tons of waste, which amounted to 411 kg of waste generated per person (Department for Environment, Food & Rural Affairs, 2015). During the same time period, households in the U.S. generated 251 million tons of waste, which is equivalent to a person generating approximately 2 kg of waste every day (U.S. Environmental Protection Agency, 2012). Out of these 251 million tons of total waste generated, approximately 20% of the discarded items were categorized as durable goods. The disposal of durable goods is particularly worrisome because they are typically produced using material from non- renewable resources such as iron, minerals, and petroleum-based raw materials

    High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    Get PDF
    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented

    Markarian 421's Unusual Satellite Galaxy

    Get PDF
    We present Hubble Space Telescope (HST) imagery and photometry of the active galaxy Markarian 421 and its companion galaxy 14 arcsec to the ENE. The HST images indicate that the companion is a morphological spiral rather than elliptical as previous ground--based imaging has concluded. The companion has a bright, compact nucleus, appearing unresolved in the HST images. This is suggestive of Seyfert activity, or possibly a highly luminous compact star cluster. We also report the results of high dynamic range long-slit spectroscopy with the slit placed to extend across both galaxies and nuclei. We detect no emission lines in the companion nucleus, though there is evidence for recent star formation. Velocities derived from a number of absorption lines visible in both galaxies indicate that the two systems are probably tidally bound and thus in close physical proximity. Using the measured relative velocities, we derive a lower limit on the MKN 421 mass within the companion orbit (R \sim 10 kpc) of 5.9 \times 10^{11} solar masses, and a mass-to-light ratio of >= 17. Our spectroscopy also shows for the first time the presence of H\alpha and [NII] emission lines from the nucleus of MKN 421, providing another example of the appearance of new emission features in the previously featureless spectrum of a classical BL Lac object. We see both broad and narrow line emission, with a velocity dispersion of several thousand km s^{-1} evident in the broad lines.Comment: LaTeX (aaspp4 style), 28 pages, 8 figures, to appear in AJ. Revised text from ref. comments; new & modified figures; new photometry included; minor corrections of typos. Color version of Fig. 1 to appear in Feb. 2000 Sky & Telescop
    corecore