27 research outputs found

    Preexisting Neutralizing Antibody Responses Distinguish Clinically Inapparent and Apparent Dengue Virus Infections in a Sri Lankan Pediatric Cohort

    Get PDF
    Dengue viruses (DENVs) are mosquito-borne flaviviruses that infect humans. The clinical presentation of DENV infection ranges from inapparent infection to dengue hemorrhagic fever and dengue shock syndrome. We analyzed samples from a pediatric dengue cohort study in Sri Lanka to explore whether antibody responses differentiated clinically apparent infections from clinically inapparent infections. In DENV-naive individuals exposed to primary DENV infections, we observed no difference in the quantity or quality of acquired antibodies between inapparent and apparent infections. Children who experienced primary infections had broad, serotype–cross-neutralizing antibody responses that narrowed in breadth to a single serotype over a 12-month period after infection. In DENV immune children who were experiencing a repeat infection, we observed a strong association between preexisting neutralizing antibodies and clinical outcome. Notably, children with preexisting monospecific neutralizing antibody responses were more likely to develop fever than children with cross-neutralizing responses. Preexisting DENV neutralizing antibodies are correlated with protection from dengue disease

    Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses.

    Get PDF
    The conserved hemagglutinin (HA) stem has been a focus of universal influenza vaccine efforts. Influenza A group 1 HA stem-nanoparticles have been demonstrated to confer heterosubtypic protection in animals; however, the protection does not extend to group 2 viruses, due in part to differences in glycosylation between group 1 and 2 stems. Here, we show that introducing the group 2 glycan at Asn38 to a group 1 stem-nanoparticle (gN38 variant) based on A/New Caledonia/20/99 (H1N1) broadens antibody responses to cross-react with group 2 HAs. Immunoglobulins elicited by the gN38 variant provide complete protection against group 2 H7N9 virus infection, while the variant loses protection against a group 1 H5N1 virus. The N38 glycan thus is pivotal in directing antibody responses by controlling access to group-determining stem epitopes. Precise targeting of stem-directed antibody responses to the site of vulnerability by glycan repositioning may be a step towards achieving cross-group influenza protection.We thank D. Scorpio, A. Taylor, H. Bao, C. Chiedi, M. Dillon, L. Gilliam, and G. Sarbador (VRC) for help with animal studies; H. Andersen (Bioqual, Inc.) for mouse challenge studies; C. Case (Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc.) for help with challenge study coordination; A. Kumar (VRC) for producing RSV proteins; and members of Viral Pathogenesis Laboratory and Universal Influenza Vaccine Program (VRC) for helpful discussion. Support for this work was provided by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Electron microscopy data collection and analyses were funded by federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract number HHSN261200800001E, and by Leidos Biomedical Research, Inc. (Y.T. and T.S.)

    Stabilized Coronavirus Spike Stem Elicits a Broadly Protective Antibody

    Get PDF
    Current coronavirus vaccines primarily target immunodominant epitopes in the S1 subunit, which are poorly conserved and susceptible to escape mutations, thus threatening vaccine efficacy. Here, we use structure-guided protein engineering to remove the S1 subunit from the MERS-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicits cross-reactive β-coronavirus antibody responses and protects mice against lethal MERS-CoV challenge. High-throughput screening of antibody secreting cells from MERS SS-immunized mice leads to discovery of a panel of cross-reactive monoclonal antibodies. Among them, antibody IgG22 binds with high affinity to both MERS-CoV and SARS-CoV-2 S proteins, and a combination of electron microscopy and crystal structures localizes the epitope to a conserved coiled-coil region in the S2 subunit. Passive transfer of IgG22 protects mice against both MERS-CoV and SARS-CoV-2 challenge. Collectively, these results provide proof-of-principle for cross-reactive coronavirus antibodies and inform the development of pan-coronavirus vaccines and therapeutic antibodies

    Primary Human mDC1, mDC2, and pDC Dendritic Cells Are Differentially Infected and Activated by Respiratory Syncytial Virus

    Get PDF
    Respiratory syncytial virus (RSV) causes recurrent infections throughout life. Vaccine development may depend upon understanding the molecular basis for induction of ineffective immunity. Because dendritic cells (DCs) are critically involved in early responses to infection, their interaction with RSV may determine the immunological outcome of RSV infection. Therefore, we investigated the ability of RSV to infect and activate primary mDCs and pDCs using recombinant RSV expressing green fluorescent protein (GFP). At a multiplicity of infection of 5, initial studies demonstrated ∼6.8% of mDC1 and ∼0.9% pDCs were infected. We extended these studies to include CD1c−CD141+ mDC2, finding mDC2 infected at similar frequencies as mDC1. Both infected and uninfected cells upregulated phenotypic markers of maturation. Divalent cations were required for infection and maturation, but maturation did not require viral replication. There is evidence that attachment and entry/replication processes exert distinct effects on DC activation. Cell-specific patterns of RSV-induced maturation and cytokine production were detected in mDC1, mDC2, and pDC. We also demonstrate for the first time that RSV induces significant TIMP-2 production in all DC subsets. Defining the influence of RSV on the function of selected DC subsets may improve the likelihood of achieving protective vaccine-induced immunity

    Influenza Group 2 HA Stem-Only Nanoparticles Induce Heterotypic Immune Response

    Get PDF
    National Institutes of Health Summer Research Progra

    Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies

    No full text
    Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARSCoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks

    Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies (vol 181, pg 1004, 2020)

    No full text
    Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARSCoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks
    corecore