1,532 research outputs found

    The variable radio counterpart and possible large-scale jet of the new Z-source XTE J1701-462

    Full text link
    We report radio observations, made with the Australia Telescope Compact Array, of the X-ray transient XTE J1701-462. This system has been classified as a new `Z' source, displaying characteristic patterns of behaviour probably associated with accretion onto a low magnetic field neutron star at close to the Eddington limit. The radio counterpart is highly variable, and was detected in six of sixteen observations over the period 2006 January -- April. The coupling of radio emission to X-ray state, despite limited sampling, appears to be similar to that of other `Z' sources, in that there is no radio emission on the flaring branch. The mean radio and X-ray luminosities are consistent with the other Z sources for a distance of 5--15 kpc. The radio spectrum is unusually flat, or even inverted, in contrast to the related sources, Sco X-1 and Cir X-1, which usually display an optically thin radio spectrum. Deep wide-field observations indicate an extended structure three arcminutes to the south which is aligned with the X-ray binary. This seems to represent a significant overdensity of radio sources for the field and so, although a background source remains a strong possibility, we consider it plausible that this is a large-scale jet associated with XTE J1701-462.Comment: Accepted for publication as a Letter in MNRA

    Modeling the X-ray Contribution of X-ray Binary Jets

    Full text link
    Astrophysical jets exist in both XRBs and AGN, and seem to share common features, particularly in the radio. While AGN jets are known to emit X-rays, the situation for XRB jets is not so clear. Radio jets have been resolved in several XRBs in the low/hard state, establishing that some form of outflow is routinely present in this state. Interestingly, the flat-to-inverted radio synchrotron emission associated with these outflows strongly correlates with the X-ray emission in several sources, suggesting that the jet plasma plays a role at higher frequencies. In this same state, there is increasing evidence for a turnover in the IR/optical where the flat-to-inverted spectrum seems to connect to an optically thin component extending into the X-rays. We discuss how jet synchrotron emission is likely to contribute to the X-rays, in addition to inverse Compton up-scattering, providing a natural explanation for these correlations and the turnover in the IR/optical band. We present model parameters for fits to several sources, and address some common misconceptions about the jet model.Comment: 4 pages, 1 Table, conference proceedings for "The Physics of Relativistic Jets in the Chandra and XMM Era, Bologna, 2002", Eds. G. Brunetti, D. E. Harris, R. M. Sambruna & G. Sett

    Near-infrared synchrotron emission from the compact jet of GX339-4

    Get PDF
    We have compiled contemporaneous broadband observations of the black hole candidate X-ray binary GX 339-4 when in the low/hard X-ray state in 1981 and 1997. The data clearly reveal the presence of two spectral components, with thermal and non-thermal spectra, overlapping in the optical -- near-infrared bands. The non-thermal component lies on an extrapolation of the radio spectrum of the source, and we interpret it as optically thin synchrotron emission from the powerful, compact jet in the system. Detection of this break from self-absorbed to optically thin synchrotron emission from the jet allows us to place a firm lower limit on the ratio of jet (synchrotron) to X-ray luminosities of 5\geq 5%. We further note that extrapolation of the optically thin synchrotron component from the near-infrared to higher frequencies coincides with the observed X-ray spectrum, supporting models in which the X-rays could originate via optically thin synchrotron emission from the jet (possibly instead of Comptonisation).Comment: Accepted for publication in ApJ Lette

    The infrared/X-ray correlation of GX 339-4: Probing hard X-ray emission in accreting black holes

    Get PDF
    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories [radio, infrared(IR), optical] and satellites (X-rays). Here, we present results of these broad-band observational campaigns, focusing on the optical-IR (OIR)/X-ray flux correlations over the four outbursts. We found tight OIR/X-ray correlations over four decades with the presence of a break in the IR/X-ray correlation in the hard state. This correlation is the same for all four outbursts. This can be interpreted in a consistent way by considering a synchrotron self-Compton origin of the X-rays in which the break frequency varies between the optically thick and thin regime of the jet spectrum. We also highlight the similarities and differences between optical/X-ray and IR/X-ray correlations which suggest a jet origin of the near-IR emission in the hard state while the optical is more likely dominated by the blackbody emission of the accretion disc in both hard and soft state. However we find a non negligible contribution of 40 per cent of the jet emission in the V-band during the hard state. We finally concentrate on a soft-to-hard state transition during the decay of the 2004 outburst by comparing the radio, IR, optical and hard X-rays light curves. It appears that unusual delays between the peak of emission in the different energy domains may provide some important constraints on jet formation scenario.Comment: Accepted for publication in MNRAS, 12 pages, 8 figure

    Radio / X-ray correlation in the low/hard state of GX 339--4

    Get PDF
    We present the results of a long-term study of the black hole candidate GX 339-4 using simultaneous radio (from the Australia Telescope Compact Array) and X-ray (from the Rossi X-ray Timing Explorer and BeppoSAX) observations performed between 1997 and 2000. We find strong evidence for a correlation between these two emission regimes that extends over more than three decades in X-ray flux, down to the quiescence level of GX 339-4. This is the strongest evidence to date for such strong coupling between radio and X-ray emission. We discuss these results in light of a jet model that can explain the radio/X-ray correlation. This could indicate that a significant fraction of the X-ray flux that is observed in the low-hard state of black hole candidates may be due to optically thin synchrotron emission from the compact jet.Comment: 8 pages. Accepted for publication in Astronomy & Astrophysics, 200

    The first outburst of the black hole candidate MAXI J1836-194 observed by INTEGRAL, Swift, and RXTE

    Full text link
    MAXI J1836-194 is a transient black-hole candidate discovered in outburst by MAXI on 30 August 2011. We report on the available INTEGRAL, Swift, and RXTE observations performed in the direction of the source during this event before 55 864 MJD. Combining the broad band (0.6-200 keV) spectral and timing information obtained from these data with the results of radio observations, we show that the event displayed by MAXI J1836-194 is another example of "failed" outburst. During the first ~20 days after the onset of the event, the source underwent a transition from the canonical low/hard to the hard intermediate state, while reaching the highest X-ray flux. In the ~40 days following the peak of the outburst, the source displayed a progressive spectral hardening and a decrease of the X-ray flux, thus it entered again the low/hard state and began its return to quiescence.Comment: Accepted for A&A Letters on 22 Dec. 201
    corecore