4 research outputs found

    Frozen ground and snow cover monitoring in Livingston and Deception islands, Antarctica: preliminary results of the 2015-2019 PERMASNOW project

    Get PDF
    Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to overcome this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data from our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.info:eu-repo/semantics/publishedVersio

    Variability of the air temperature and its comparison with MODIS Land Surface Temperature in the Hurd Peninsula of the Livingston Island, Antarctica, between 2000 and 2016

    Get PDF
    Ponencia presentada en: XVIII Congreso de la Asociación Española de Teledetección celebrado en Valladolid del 24 al 27 septiembre 2019.[ES]En los ambientes polares, tan vulnerables al cambio climático, el estudio de la temperatura es imprescindible. Por ello, y en el marco del proyecto PERMASNOW, en este trabajo hemos estudiado en detalle la variación de la temperatura del aire (Ta) en la península Hurd de la isla Livingston (Antártida) y hemos tratado de estimarla a partir de los datos de temperatura de la superficie terrestre (LST, por sus siglas en inglés) del sensor MODIS entre los años 2000 y 2016. Utilizamos datos de Ta media diaria obtenidos en seis puntos, tres estaciones meteorológicas de AEMET y tres estaciones del proyecto PERMASNOW: Juan Carlos I (JCI), Glaciar Johnson (GJ), Glaciar Hurd (GH), Incinerador (INC), Reina Sofía (RS) y Collado Ramos (CR), respectivamente. Los datos MODIS LST son los diurnos y nocturnos de los satélites Terra y Aqua. La tendencia en Ta se ha analizado mediante la regresión localmente ponderada (LOESS, por sus siglas en inglés) y la relación Ta -LST con regresiones lineales múltiples. Concluimos que Ta en el área de estudio varía: se observa en la estación JCI, más cercana a la costa, una tendencia al enfriamiento con valores entre –2,3 y –3,0°C década–1. En cambio, las estaciones más alejadas de la costa y de mayor altitud muestran una tendencia al calentamiento (entre +0,2 y +0,8°C década-1). Los mejores modelos de estimación de Ta a partir de LST y variables temporales se obtienen con los datos diurnos de Terra (R2 = 0,5-0,7; RSE = 2°C), exceptuando GJ, donde la variable LST no es significativa. Con la validación cruzada (CV) se aprecian también, excepto en GJ, mejores resultados con los datos diurnos de Terra (R2 CV = 0,5-0,6; RMSECV = 2,5-2,6°C). Finalmente, concluimos que los datos MODIS LST son útiles para estimar tendencias de Ta a largo plazo en el área de estudio.[EN]In polar zones, where satellite data are very useful due to the limited in situ data, it is therefore essential to study the air temperature behaviour. In the framework of the PERMASNOW project we estimated the air temperature (Ta) in the Hurd Peninsula of Livingston Island (Antarctica) from the land surface temperature (LST) data of the MODIS between 2000 and 2016. We worked with Ta data obtained at six stations (3 AEMET meteorological stations and 3 PERMASNOW project stations: Juan Carlos I (JCI), Johnson Glacier (JG), Hurd Glacier (HG), Incinerator (INC), Reina Sofia (RS) and Collado Ramos (CR), respectively. In addition, we analyzed daytime and nighttime LST data from the Terra and Aqua satellites. Locally weighted regression (LOESS) and multiple linear regressions were used for statistical analysis. We conclude that the Ta in the study area varies: a cooling trend with values between –2.3 and –3.0°C decade-1 is observed in JCI, which is closer to the coast. On the other hand, the stations farther from the coast and at higher altitudes show a warming trend (between +0.2 and +0.8°C decade-1). The best Ta models are obtained with Terra daytime data (R2 = 0.5-0.7 and RSE = 2°C), except JG, where the LST variable is not significant. With cross validation (CV), better results are also seen, except in JG, with the daytime Terra data (R2 CV = 0.5-0.6, RMSECV = 2.5-2.6°C). In summary, MODIS LST data are useful for estimating long-term Ta trends in the study area.Esta investigación fue posible gracias a la financiación de la Agencia Estatal de Investigación a través del proyecto PERMASNOW [CTM2014-52021-R], la ayuda de la Universidad de Oviedo al Grupo de Investigación RSApps en 2018 [PAPI-18-GR-2016-0005] y las ayudas obtenidas por A.C.-P. (“Severo Ochoa” del Gobierno del Principado de Asturias [BP17-151] y “Ayuda Predoctoral” de la Universidad de Oviedo)

    Frozen ground and snow cover monitoring in livingston and deception islands, antarctica: Preliminary results of the 2015-2019 permasnow project Monitorización de los suelos congelados y la cubierta de nieve en las islas livingston and deception, antártida: Resultados preliminares del proyecto permasnow

    No full text
    Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to over-come this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data from our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    Frozen ground and snow cover monitoring in Livingston and Deception islands, Antarctica: preliminary results of the 2015-2019 PERMASNOW project

    No full text
    Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to overcome this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data from our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.Desde el año 2006, nuestro equipo de investigación ha ido estableciendo, en las islas Livingston y Decepción, en el archipiélago de las Shetland del Sur, Antártida, varias estaciones de monitorización del espesor de la capa activa, dentro de la red internacional Circumpolar Active Layer Monitoring (CALM), y del régimen térmico de los suelos para la red Ground Terrestrial Network-Permafrost (GTN-P). Ambas redes resultan de grupos de trabajo de la Asociación Internacional del Permafrost (IPA). En las estaciones GTN-P, además de la temperatura del aire, suelo, y terreno a distintas profundidades, se monitoriza, mediante termonivómetros, el espesor de la cubierta nival. Desde el año 2006 se ha ido observado un retraso en la desaparición de la capa de nieve, lo que podría explicar las variaciones que estábamos midiendo en el espesor y temperatura de la capa activa y el permafrost. Por ello, a finales de 2015 iniciamos el proyecto PERMASNOW (2015-2019) para estudiar el efecto de la capa de nieve en el régimen térmico del suelo. Este proyecto incluía dos vías para el estudio de la nieve. Por un lado, a principios de 2017 se desplegaron nuevos instrumentos en nuestras zonas de estudio, incluyendo cámaras fotográficas automáticas, termonivómetros con mayor número de sensores y un conjunto de sensores que configuran una estación para la observación de 3 variables atmosféricas y de la cubierta nival. Utilizamos los datos adquiridos a lo largo de los años 2017 y 2018 por estos nuevos instrumentos y sensores, junto con los de los demás instrumentos previamente existentes en nuestras estaciones GTN-P, para estudiar en detalle la cubierta de nieve. Por otro lado, se utilizó la teledetección para tratar de cartografiar dicha cubierta nival, no sólo en nuestras estaciones, sino también en la totalidad de estas islas con el fin conocer la distribución de la cubierta de nieve, y abrir así la vía a la futura cartografía de la distribución del permafrost en las mismas. Se utilizaron temperaturas superficiales y albedo derivadas del instrumento MODIS para detectar la cubierta de nieve y para analizar la temperatura superficial. Por otro lado, debido a la limitación de los sensores ópticos en esta región nubosa, también se utilizaron datos de radar Terrasar X. Para el análisis de datos de teledetección se tomaron datos in situ (verdad terreno) como cartografía de la capa nival, catas de nieve, mediciones de albedo, etc. Aunque el proyecto está terminado, el análisis de datos todavía está en curso. Aquí presentamos las diferentes tareas de investigación que estamos desarrollando, así como los resultados más importantes que ya hemos obtenido sobre la cubierta de nieve, que confirman cómo la duración de la cubierta de nieve ha ido cambiando en los últimos años, y está afectando al comportamiento térmico del suelo
    corecore