214 research outputs found

    Revisiting the solar tachocline: Average properties and temporal variations

    Full text link
    The tachocline is believed to be the region where the solar dynamo operates. With over a solar cycle's worth of data available from the MDI and GONG instruments, we are in a position to investigate not merely the average structure of the solar tachocline, but also its time variations. We determine the properties of the tachocline as a function of time by fitting a two-dimensional model that takes latitudinal variations of the tachocline properties into account. We confirm that if we consider central position of the tachocline, it is prolate. Our results show that the tachocline is thicker at higher latitudes than the equator, making the overall shape of the tachocline more complex. Of the tachocline properties examined, the transition of the rotation rate across the tachocline, and to some extent the position of the tachocline, show some temporal variations

    The Sun Asphericities: Astrophysical Relevance

    Full text link
    Of all the fundamental parameters of the Sun (diameter, mass, temperature...), the gravitational multipole moments (of degree l and order m) that determine the solar moments of inertia, are still poorly known. However, at the first order (l=2), the quadrupole moment is relevant to many astrophysical applications. It indeed contributes to the relativistic perihelion advance of planets, together with the post-Newtonian (PN) parameters; or to the precession of the orbital plane about the Sun polar axis, the latter being unaffected by the purely relativistic PN contribution. Hence, a precise knowledge of the quadrupole moment is necessary for accurate orbit determination, and alternatively, to obtain constraints on the PN parameters. Moreover, the successive gravitational multipole moments have a physical meaning: they describe deviations from a purely spherical mass distribution. Thus, their precise determination gives indications on the solar internal structure. Here, we explain why it is difficult to compute these parameters, how to derive the best values, and how they will be determined in a near future by means of space experiments.Comment: 14 pages, 9 figures (see published version for a better resolution), submited to Proceedings of the Royal Society: Mathematical, Physical and Engineering Science

    The Rotation Of The Deep Solar Layers

    Full text link
    From the analysis of low-order GOLF+MDI sectoral modes and LOWL data (l > 3), we derive the solar radial rotation profile assuming no latitudinal dependance in the solar core. These low-order acoustic modes contain the most statistically significant information about rotation of the deepest solar layers and should be least influenced by internal variability associated with the solar dynamo. After correction of the sectoral splittings for their contamination by the rotation of the higher latitudes, we obtain a flat rotation profile down to 0.2 solar radius.Comment: accepted in ApJ Letters 5 pages, 2 figure

    Rotation of the solar convection zone from helioseismology

    Get PDF
    Helioseismology has provided very detailed inferences about rotation of the solar interior. Within the convection zone the rotation rate roughly shares the latitudinal variation seen in the surface differential rotation. The transition to the nearly uniformly rotating radiative interior takes place in a narrow tachocline, which is likely important to the operation of the solar magnetic cycle.The convection-zone rotation displays zonal flows, regions of slightly more rapid and slow rotation, extending over much of the depth of the convection zone and converging towards the equator as the solar cycle progresses. In addition, there is some evidence for a quasi-periodic variation in rotation, with a period of around 1.3 yr, at the equator near the bottom of the convection zone.Comment: 12 pages, 8 figures. To appear in Proc. IAU Symposium 239: Convection in Astrophysics,eds F. Kupka, I. W. Roxburgh & K. L. Chan, Cambridge University Pres
    • …
    corecore