18 research outputs found

    The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State.

    Get PDF
    Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.This research was funded by the Junta de Comunidades de Castilla-La Mancha (JCCM, co-funded by the European Social Fund, SBPLY/19/180501/000226), the Instituto de Salud Carlos III through the project PI18/00995, PI21/00384 (co-funded by European Regional Development Fund/European Social Fund—“Investing in your future”) Sociedad Española de Cardiología, 2020, Grant PRB3 (IPT17/0019—ISCIII-SGEFI/ERDF), Spanish Ministry of Science, Innovation and Universities (PGC2018-097019-B-I00) and “la Caixa” Banking Foundation (project code HR17-00247). These results are aligned with the Spanish initiative on the Human Proteome Project (SpHPP).S

    Diabetes Mellitus and Its Implications in Aortic Stenosis Patients

    Get PDF
    Aortic stenosis (AS) and diabetes mellitus (DM) are both progressive diseases that if left untreated, result in significant morbidity and mortality. Several studies revealed that the prevalence of DM is substantially higher in patients with AS and, thus, the progression from mild to severe AS is greater in those patients with DM. DM and common comorbidities associated with both diseases, DM and AS, increase patient management complexity and make aortic valve replacement the only effective treatment. For that reason, a better understanding of the pathogenesis underlying both these diseases and the relationships between them is necessary to design more appropriate preventive and therapeutic approaches. In this review, we provided an overview of the main aspects of the relationship between AS and DM, including common comorbidities and risk factors. We also discuss the established treatments/therapies in patients with AS and DM

    Prioritization of Candidate Biomarkers for Degenerative Aortic Stenosis through a Systems Biology-Based In-Silico Approach

    Get PDF
    Degenerative aortic stenosis is the most common valve disease in the elderly and is usually confirmed at an advanced stage when the only treatment is surgery. This work is focused on the study of previously defined biomarkers through systems biology and artificial neuronal networks to understand their potential role within aortic stenosis. The goal was generating a molecular panel of biomarkers to ensure an accurate diagnosis, risk stratification, and follow-up of aortic stenosis patients. We used in silico studies to combine and re-analyze the results of our previous studies and, with information from multiple databases, established a mathematical model. After this, we prioritized two proteins related to endoplasmic reticulum stress, thrombospondin-1 and endoplasmin, which have not been previously validated as markers for aortic stenosis, and analyzed them in a cell model and in plasma from human subjects. Large-scale bioinformatics tools allow us to extract the most significant results after using high throughput analytical techniques. Our results could help to prevent the development of aortic stenosis and open the possibility of a future strategy based on more specific therapies

    Potential role of new molecular plasma signatures on cardiovascular risk stratification in asymptomatic individuals

    Get PDF
    The evaluation of cardiovascular (CV) risk is based on equations derived from epidemiological data in individuals beyond the limits of middle age such as the Framingham and SCORE risk assessments. Lifetime Risk calculator (QRisk®), estimates CV risk throughout a subjects' lifetime, allowing those. A more aggressive and earlier intervention to be identified and offered protection from the consequences of CV and renal disease. The search for molecular profiles in young people that allow a correct stratification of CV risk would be of great interest to adopt preventive therapeutic measures in individuals at high CV risk. To improve the selection of subjects susceptible to intervention with aged between 30-50 years, we have employed a multiple proteomic strategy to search for new markers of early CV disease or reported CV events and to evaluate their relationship with Lifetime Risk. Blood samples from 71 patients were classified into 3 groups according to their CV risk (healthy, with CV risk factors and with a previously reported CV event subjects) and they were analyzed using a high through quantitative proteomics approach. This strategy allowed three different proteomic signatures to be defined, two of which were related to CV stratification and the third one involved markers of organ damage.This work was supported by grants from the Instituto de Salud Carlos III (PI070537, IF08/3667-1, PI11-02239, PI 14/01917, PI11/01401, PI11/02432, PI13/01873, PI13/01746, PI13/01581, PI14/01650, PI14/01841), PT13/0001/0013, PIE13/00051, PIE13/00045, CP09/00229, CP15/00129, IDC Salud (3371/002), the MutuaMadrileña Foundation, the SENEFRO Foundation and FONDOS FEDER (RD06/0014/1015, RD12/0042/0071). Sociedad Española de cardiología para la Investigación Básica 2017. Grant PRB3 (IPT17/0019 - ISCIII-SGEFI / ERDF. These results are in line with the Spanish initiative on the Human Proteome Project.S

    Oxidative Stress in Cardiovascular Diseases

    No full text
    Cardiovascular diseases encompass a range of pathologies that affect the heart or blood vessels. Oxidative stress is an important factor that contributes to the development of these pathologies. Adverse effects due to oxidative stress manifest when there is an imbalance between the production and elimination of reactive oxygen species (ROS), or when physiological mechanisms of repair for oxidative injury are overburdened. This chapter focuses on ROS accumulation and antioxidant system deficiencies in the context of their influence on cardiovascular disease. We also discuss the importance of high throughput approaches, such as proteomics, with regard to their role in advancing the field of precision medicine for cardiovascular diseases, while keeping in mind the ultimate goal of improving patient care and quality of life

    Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology

    Get PDF
    Objective: Severe pressure ulcers (PUs) do not respond to conservative wound therapy and need surgical repair. To better understand the pathogenesis and to advance on new therapeutic options, we focused on the proteomic analysis of PU, which offers substantial opportunities to identify significant changes in protein abundance during the course of PU formation in an unbiased manner. Approach: To better define the protein pattern of this pathology, we performed a proteomic approach in which we compare severe PU tissue from spinal cord injury (SCI) patients with control tissue from the same patients. Results: We found 76 proteins with difference in abundance. Of these, 10 proteins were verified as proteins that define the pathology: antithrombin-III, alpha-1-antitrypsin, kininogen-1, alpha-2-macroglobulin, fibronectin, apolipoprotein A-I, collagen alpha-1 (XII) chain, haptoglobin, apolipoprotein B-100, and complement factor B. Innovation: This is the first study to analyze differential abundance protein of PU tissue from SCI patients using high-throughput protein identification and quantification by tandem mass tags followed by liquid chromatography tandem mass spectrometry. Conclusion: Differential abundance proteins are mainly involved in tissue regeneration. These proteins might be considered as future therapeutic options to enhance the physiological response and permit cellular repair of damaged tissue.This work was supported by grants from the Instituto de Salud Carlos III (PI14/01917, PI18/00995, PT13/0001/0013) for Funding: ISCIII (‘‘PI14/01917, PI18/00995, PT13/0001/0013)’’, co-funded by ERDF/ESF, ‘‘Investing in your future’’. Redes Tema ticas de Investigacion Cooperativa (FONDOS FEDER, RD12/0042/0071). Sociedad Espanola de Cardiologıa para la Investigacion Basica 2017. Grant PRB3 (IPT17/0019—ISCIII-SGEFI/ERDF). These results are aligned with the Spanish initiative on the Human Proteome Project (SpHPP).S

    Proteomic investigations into hypertension: What’s new and how might it affect clinical practice?

    No full text
    Introduction: Hypertension is a multifactorial disease that has, thus far, proven to be a difficult target for pharmacological intervention. The application of proteomic strategies may help to identify new biomarkers for the early diagnosis and prompt treatment of hypertension, in order to control blood pressure and prevent organ damage. Areas covered: Advances in proteomics have led to the discovery of new biomarkers to help track the pathophysiological processes implicated in hypertension. These findings not only help to better understand the nature of the disease, but will also contribute to the clinical needs for a timely diagnosis and more precise treatment. In this review, we provide an overview of new biomarkers identified in hypertension through the application of proteomic techniques, and we also discuss the difficulties and challenges in identifying biomarkers in this clinical setting. We performed a literature search in PubMed with the key words ‘hypertension’ and ‘proteomics’, and focused specifically on the most recent literature on the utility of proteomics in hypertension research. Expert opinion: There have been several promising biomarkers of hypertension identified by proteomics, but too few have been introduced to the clinic. Thus, further investigations in larger cohorts are necessary to test the feasibility of this strategy for patients. Also, this emerging field would profit from more collaboration between clinicians and researchers.Sin financiación3.614 JCR (2019) Q1, 19/77 Biochemical Research Methods0.979 SJR (2019) Q2, 155/456 Biochemistry; Q3, 206/414 Molecular BiologyNo data IDR 2019UE

    Effects of Growth Hormone Treatment and Rehabilitation in Incomplete Chronic Traumatic Spinal Cord Injury: Insight from Proteome Analysis

    No full text
    Despite promising advances in the medical management of spinal cord injury (SCI), there is still no available effective therapy to repair the neurological damage in patients who experience this life-transforming condition. Recently, we performed a phase II/III placebo-controlled randomized trial of safety and efficacy of growth hormone (GH) treatment in incomplete chronic traumatic spinal cord injury. The main findings were that the combined treatment of GH plus rehabilitation treatment is feasible and safe, and that GH but not placebo slightly improves the SCI individual motor score. Moreover, we found that an intensive and long-lasting rehabilitation program per se increases the functional outcome of SCI individuals. To understand the possible mechanisms of the improvement due to GH treatment (motor score) and due to rehabilitation (functional outcome), we used a proteomic approach. Here, we used a multiple proteomic strategy to search for recovery biomarkers in blood plasma with the potential to predict response to somatropin treatment and to delayed intensive rehabilitation. Forty-six patients were recruited and followed for a minimum period of 1 year. Patients were classified into two groups based on their treatment: recombinant somatropin (0.4 mg) or placebo. Both groups received rehabilitation treatment. Our strategy allowed us to perform one of the deepest plasma proteomic analyses thus far, which revealed two proteomic signatures with predictive value: (i) response to recombinant somatropin treatment and (ii) response to rehabilitation. The proteins implicated in these signatures are related to homeostasis, inflammation, and coagulation functions. These findings open novel possibilities to assess and therapeutically manage patients with SCI, which could have a positive impact on their clinical response

    Novel molecular plasma signatures on cardiovascular disease can stratify patients throughout life

    No full text
    Several models are available to calculate the risk of developing cardiovascular complications in mid-life. The estimation of lifetime risk in the long-term remains an unmet clinical need. We previously identified new molecular plasma signatures for cardiovascular risk stratification in a young population (30–50-years old). The aim of the present study was to determine if the specific signature found in young population changes with age. Proteomic analysis was performed in plasma samples obtained from different age groups, middle-age (50–70-years old, n = 63) and elderly (>70-years old, n = 61), which, in turn were classified into 3 subgroups according to cardiovascular risk. Our previous results in a young population clearly showed two different proteomic signatures. Building on these findings, targeted-mass spectrometry and turbidimetry analyses were used to test these signatures in middle-age and elderly populations. This strategy identified three common proteomic signatures between young and adult patients related to cardiovascular stratification, organ damage and risk prediction. Furthermore, receiver operating characteristic analysis revealed the potential value of these novel markers for lifetime risk stratification. Our results provide new insight into altered molecular mechanisms in the pathogenesis of cardiovascular disease and, more importantly, identify novel protein panels that can stratify patients throughout life. Significance Our results revealed three common proteomic signatures between young and adult patients related to cardiovascular stratification, organ damage and risk prediction. The results obtained provide a deeper insight into the pathogenesis of CV diseases and allow the identification of novel protein panels to stratify patients according to CV risk throughout life. While current estimators calculate the risk of having a CV event considering age as the most important factor to CV disease, our results represent an alternative to traditional CV risk factors, allowing the stratification of CV risk regardless of the age. Using a combination of traditional markers and established algorithms with these findings as a future preventive strategy, could facilitate an adequate assessment of CV risk.Sin financiación4.044 JCR (2020) Q2, 21/78 Biochemical Research Methods1.067 SJR (2020) Q1, 23/140 BiophysicsNo data IDR 2020UE

    Oxidized Low-Density Lipoprotein Associates with Ventricular Stress in Young Adults and Triggers Intracellular Ca 2+ Alterations in Adult Ventricular Cardiomyocytes

    No full text
    Oxidized low-density lipoprotein (oxLDL) is associated with cardiac damage and causes injury to multiple cell types. We aimed to investigate the role of oxLDL in ventricular stress. We first examined the association between circulating oxLDL and N-terminal pro-brain natriuretic peptide (NT-proBNP), a marker of myocardial stress, in young subjects (30-50 years) with or without stable coronary artery disease (SCAD). oxLDL and NT-proBNP were significantly higher in subjects at high cardiovascular risk (CVR) than in subjects at low CVR and were associated independently of traditional CVR factors and C-reactive protein. Furthermore, the levels of oxLDL and NT-proBNP were significantly lower in subjects with SCAD than in peers at high CVR. To determine the intracellular mechanisms involved in the cardiac effects of oxLDL, we analyzed the in vitro effect of oxLDL on intracellular Ca2+ handling in adult rat ventricular cardiomyocytes using confocal microscopy. Acute challenge of adult ventricular cardiomyocytes to oxLDL reduced systolic Ca2+ transients and sarcoplasmic reticulum Ca2+ load. Moreover, diastolic spontaneous Ca2+ leak increased significantly after acute exposure to oxLDL. Thus, we demonstrate that oxLDL associates with NT-proBNP in young subjects, and can directly induce Ca2+ mishandling in adult ventricular cardiomyoyctes, predisposing cardiomyocytes to cardiac dysfunction and arrhythmogenicity.Sin financiación6.313 JCR (2020) Q1, 60/295 Biochemistry & Molecular Biology1.067 SJR (2020) Q2, 136/438 BiochemistryNo data IDR 2020UE
    corecore