19 research outputs found

    Effects of dietary carotenoids on mouse lung genomic profiles and their modulatory effects on short-term cigarette smoke exposures

    Get PDF
    Male C57BL/6 mice were fed diets supplemented with either β-carotene (BC) or lycopene (LY) that were formulated for human consumption. Four weeks of dietary supplementations results in plasma and lung carotenoid (CAR) concentrations that approximated the levels detected in humans. Bioactivity of the CARs was determined by assaying their effects on the activity of the lung transcriptome (~8,500 mRNAs). Both CARs activated the cytochrome P450 1A1 gene but only BC induced the retinol dehydrogenase gene. The contrasting effects of the two CARs on the lung transcriptome were further uncovered in mice exposed to cigarette smoke (CS) for 3 days; only LY activated ~50 genes detected in the lungs of CS-exposed mice. These genes encoded inflammatory-immune proteins. Our data suggest that mice offer a viable in vivo model for studying bioactivities of dietary CARs and their modulatory effects on lung genomic expression in both health and after exposure to CS toxicants

    Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase

    No full text
    In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (K(D) = 3.8 μM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents

    Trypanosoma cruzi Disrupts Thymic Homeostasis by Altering Intrathymic and Systemic Stress-Related Endocrine Circuitries

    Get PDF
    Submitted by sandra infurna ([email protected]) on 2016-01-28T11:09:52Z No. of bitstreams: 1 vinicius_carvalho_etal_IOC_2013.pdf: 3865097 bytes, checksum: 65caa965de5487006a9dcafcdb9e2293 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-01-28T11:22:36Z (GMT) No. of bitstreams: 1 vinicius_carvalho_etal_IOC_2013.pdf: 3865097 bytes, checksum: 65caa965de5487006a9dcafcdb9e2293 (MD5)Made available in DSpace on 2016-01-28T11:22:36Z (GMT). No. of bitstreams: 1 vinicius_carvalho_etal_IOC_2013.pdf: 3865097 bytes, checksum: 65caa965de5487006a9dcafcdb9e2293 (MD5) Previous issue date: 2013Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.National University of Rosario and CONICET. Faculty of Medical Sciences. Institute of Immunology. Rosario, Argentina.National University of Rosario and CONICET. Faculty of Medical Sciences. Institute of Immunology. Rosario, Argentina.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Pesquisa sobre o Timo. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo de Góes. Rio de Janeiro, RJ, Brasil.We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC) levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4+ CD8+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL), another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively) might influence T. cruziinduced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4+ CD8+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET)-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4+ CD8+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and systemic stress-related endocrine circuitries with major consequences upon the normal process of intrathymic T cell development
    corecore