1,733 research outputs found
The Mass Dependance of Satellite Quenching in Milky Way-like Halos
Using the Sloan Digital Sky Survey, we examine the quenching of satellite
galaxies around isolated Milky Way-like hosts in the local Universe. We find
that the efficiency of satellite quenching around isolated galaxies is low and
roughly constant over two orders of magnitude in satellite stellar mass
( = ), with only of systems
quenched as a result of environmental processes. While largely independent of
satellite stellar mass, satellite quenching does exhibit clear dependence on
the properties of the host. We show that satellites of passive hosts are
substantially more likely to be quenched than those of star-forming hosts, and
we present evidence that more massive halos quench their satellites more
efficiently. These results extend trends seen previously in more massive host
halos and for higher satellite masses. Taken together, it appears that galaxies
with stellar masses larger than about are uniformly
resistant to environmental quenching, with the relative harshness of the host
environment likely serving as the primary driver of satellite quenching. At
lower stellar masses (), however, observations of the Local
Group suggest that the vast majority of satellite galaxies are quenched,
potentially pointing towards a characteristic satellite mass scale below which
quenching efficiency increases dramatically.Comment: 14 pages, 8 figure
Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications
Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals' sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine ('wine set') and an ecologically irrelevant set of 35 chemicals related to chemical hazards ('industrial set'), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used
Environmental Quenching of Low-Mass Field Galaxies
In the local Universe, there is a strong division in the star-forming
properties of low-mass galaxies, with star formation largely ubiquitous amongst
the field population while satellite systems are predominantly quenched. This
dichotomy implies that environmental processes play the dominant role in
suppressing star formation within this low-mass regime (). As shown by observations of the Local Volume,
however, there is a non-negligible population of passive systems in the field,
which challenges our understanding of quenching at low masses. By applying the
satellite quenching models of Fillingham et al. (2015) to subhalo populations
in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate
the role of environmental processes in quenching star formation within the
nearby field. Using model parameters that reproduce the satellite quenched
fraction in the Local Group, we predict a quenched fraction -- due solely to
environmental effects -- of within
of the Milky Way and M31. This is in good agreement with current observations
of the Local Volume and suggests that the majority of the passive field systems
observed at these distances are quenched via environmental mechanisms. Beyond
, however, dwarf galaxy quenching becomes difficult to explain
through an interaction with either the Milky Way or M31, such that more
isolated, field dwarfs may be self-quenched as a result of star-formation
feedback.Comment: 9 pages, 4 figures, MNRAS accepted version, comments welcome - RIP
Ducky...gone but never forgotte
A Dichotomy in Satellite Quenching Around L* Galaxies
We examine the star formation properties of bright (~0.1 L*) satellites
around isolated ~L* hosts in the local Universe using spectroscopically
confirmed systems in the Sloan Digital Sky Survey DR7. Our selection method is
carefully designed with the aid of N-body simulations to avoid groups and
clusters. We find that satellites are significantly more likely to be quenched
than a stellar mass-matched sample of isolated galaxies. Remarkably, this
quenching occurs only for satellites of hosts that are themselves quenched:
while star formation is unaffected in the satellites of star-forming hosts,
satellites around quiescent hosts are more than twice as likely to be quenched
than stellar-mass matched field samples. One implication of this is that
whatever shuts down star formation in isolated, passive L* galaxies also plays
at least an indirect role in quenching star formation in their bright
satellites. The previously-reported tendency for "galactic conformity" in
color/morphology may be a by-product of this host-specific quenching dichotomy.
The S\'ersic indices of quenched satellites are statistically identical to
those of field galaxies with the same specific star formation rates, suggesting
that environmental and secular quenching give rise to the same morphological
structure. By studying the distribution of pairwise velocities between the
hosts and satellites, we find dynamical evidence that passive host galaxies
reside in dark matter halos that are ~45% more massive than those of
star-forming host galaxies of the same stellar mass. We emphasize that even
around passive hosts, the mere fact that galaxies become satellites does not
typically result in star formation quenching: we find that only ~30% of ~0.1 L*
galaxies that fall in from the field are quenched around passive hosts,
compared with ~0% around star forming hosts.Comment: 14 pages, 9 figure
Taking Care of Business in a Flash: Constraining the Timescale for Low-Mass Satellite Quenching with ELVIS
The vast majority of dwarf satellites orbiting the Milky Way and M31 are
quenched, while comparable galaxies in the field are gas-rich and star-forming.
Assuming that this dichotomy is driven by environmental quenching, we use the
ELVIS suite of N-body simulations to constrain the characteristic timescale
upon which satellites must quench following infall into the virial volumes of
their hosts. The high satellite quenched fraction observed in the Local Group
demands an extremely short quenching timescale (~ 2 Gyr) for dwarf satellites
in the mass range Mstar ~ 10^6-10^8 Msun. This quenching timescale is
significantly shorter than that required to explain the quenched fraction of
more massive satellites (~ 8 Gyr), both in the Local Group and in more massive
host halos, suggesting a dramatic change in the dominant satellite quenching
mechanism at Mstar < 10^8 Msun. Combining our work with the results of
complementary analyses in the literature, we conclude that the suppression of
star formation in massive satellites (Mstar ~ 10^8 - 10^11 Msun) is broadly
consistent with being driven by starvation, such that the satellite quenching
timescale corresponds to the cold gas depletion time. Below a critical stellar
mass scale of ~ 10^8 Msun, however, the required quenching times are much
shorter than the expected cold gas depletion times. Instead, quenching must act
on a timescale comparable to the dynamical time of the host halo. We posit that
ram-pressure stripping can naturally explain this behavior, with the critical
mass (of Mstar ~ 10^8 Msun) corresponding to halos with gravitational restoring
forces that are too weak to overcome the drag force encountered when moving
through an extended, hot circumgalactic medium.Comment: 12 pages, 6 figures; resubmitted to MNRAS after referee report
(August 25, 2015
Recommended from our members
Drawing the answers: sketching to support free and probed recall by child witnesses and victims with Autism Spectrum Disorder
The success of witness interviews in the criminal justice system depends on the accuracy of information obtained, which is a function of both amount and quality of information. Attempts to enhance witness retrieval such as mental reinstatement of context have been designed with typically developed adults in mind. In this paper, the relative benefits of mental and sketch reinstatement mnemonics are explored with both typically developing children and children with autism. Children watched a crime event video, and their retrieval of event information was examined in free and probed recall phases of a cognitive interview. As expected, typically developing children recalled more correct information of all types than children with autism during free and probed recall phases. Sketching during free recall was more beneficial for both groups in both phases in reducing the amount of incorrect items, but the relative effect of sketching on enhancing retrieval accuracy was greater for children with autism. The results indicate the benefits of choosing retrieval mnemonics that are sensitive to the specific impairments of autistic individuals, and suggest that retrieval accuracy during interviews can be enhanced, in some cases to the same level as that of typically developing individuals
Under Pressure: Quenching Star Formation in Low-Mass Satellite Galaxies via Stripping
Recent studies of galaxies in the local Universe, including those in the
Local Group, find that the efficiency of environmental (or satellite) quenching
increases dramatically at satellite stellar masses below ~ . This suggests a physical scale where quenching transitions from a
slow "starvation" mode to a rapid "stripping" mode at low masses. We
investigate the plausibility of this scenario using observed HI surface density
profiles for a sample of 66 nearby galaxies as inputs to analytic calculations
of ram-pressure and viscous stripping. Across a broad range of host properties,
we find that stripping becomes increasingly effective at $M_{*} < 10^{8-9}\
{\rm M}_{\odot}n_{\rm halo} <
10^{-3.5}{\rm cm}^{-3}$), we find that stripping is not fully effective;
infalling satellites are, on average, stripped of < 40 - 70% of their cold gas
reservoir, which is insufficient to match observations. By including a host
halo gas distribution that is clumpy and therefore contains regions of higher
density, we are able to reproduce the observed HI gas fractions (and thus the
high quenched fraction and short quenching timescale) of Local Group
satellites, suggesting that a host halo with clumpy gas may be crucial for
quenching low-mass systems in Local Group-like (and more massive) host halos.Comment: updated version after review, now accepted to MNRAS; Accepted 2016
August 22. Received 2016 August 18; in original form 2016 June 2
Las fronteras del microrrelato: teorÃa y crÃtica del microrrelato español e hispanoamericano [RESEÑA]
Reseña de Calvo Revilla, Ana, y Javier de Navascués, eds.
Las fronteras del microrrelato: teorÃa y crÃtica del microrrelato español e hispanoamericano. Madrid/Frankfurt: Iberoamericana/Vervuert, 2012. 240 pp. (ISBN: 978-3954870103
Implantação de campos de matrizes de cajueiro.
bitstream/item/114589/1/MATRIZES-CAJUEIRO.pd
- …