47 research outputs found
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
Hepatic lipid metabolism and non-alcoholic fatty liver disease.
Non-alcoholic fatty liver disease (NAFLD) is an increasingly recognized pathology with a high prevalence and a possible evolution to its inflammatory counterpart (non-alcoholic steatohepatitis, or NASH). The pathophysiology of NAFLD and NASH has many links with the metabolic syndrome, sharing a causative factor in insulin resistance. According to a two-hit hypothesis, increased intrahepatic triglyceride accumulation (due to increased synthesis, decreased export, or both) is followed by a second step (or "hit"), which may lead to NASH. The latter likely involves oxidative stress, cytochrome P450 activation, lipid peroxidation, increased inflammatory cytokine production, activation of hepatic stellate cells and apoptosis. However, both "hits" may be caused by the same factors. The aim of this article is to overview the biochemical steps of fat regulation in the liver and the alterations occurring in the pathogenesis of NAFLD and NASH
Effects of insulin on methionine and homocysteine kinetics in type 2 diabetes with nephropathy
Although hyperhomocysteinemia, an independent cardiovascular risk factor, is common in type 2 diabetes with nephropathy, the mechanism(s) of this alteration is not known. In healthy humans, hyperinsulinemia, increases methionine transmethylation, homocysteine transsulfuration, and clearance. No such data exist in type 2 diabetes either in the fasting state or in response to hyperinsulinemia. To this purpose, seven male type 2 diabetic patients with albuminuria (1.2 +/- 0.4 g/day, three with mild to moderate renal insufficiency) and seven matched control subjects were infused for 6 h with (L)-[methyl-H-2(3), 1-C-13]methionine. Methionine flux, transmethylation, and disposal into proteins as well as homocysteine remethylation, transsulfuration, and clearance were determined before and after euglycemic hyperinsulinemia (similar to 1,000 pmol/l). In type 2 diabetic subjects, homocysteine concentration was twofold greater (P 50% and from similar to 40 to > 100%, respectively; P < 0.05) than in control subjects. The insulin-induced increments of methionine transmethylation, homocysteine transsulfuration, and clearance were markedly reduced in type 2 diabetic subjects (by more than threefold, P < 0.05 or less vs. control subjects). In contrast, methionine methyl and carbon flux were not increased in the patients. In conclusion, pathways of homocysteine disposal are impaired in type 2 diabetes with nephropathy, both in postabsorptive and insulin-stimulated states, possibly accounting for the hyperhomocysteinemia of this condition
Insulin on methionine and homocysteine kinetics in healthy humans: plasma vs. intracellular models
Methionine is a sulfur-containing amino acid that is reversibly converted into homocysteine. Homocysteine is an independent cardiovascular risk factor frequently associated with the insulin resistance syndrome. The effects of insulin on methionine and homocysteine kinetics in vivo are not known. Six middle-aged male volunteers were infused with L-[methyl-H-2(3), 1-C-13]methionine before (for 3 h) and after (for 3 additional hours) an euglycemic hyperinsulinemic (150 mU/l) clamp. Steady-state methionine and homocysteine kinetics were determined using either plasma (i.e., those of methionine) or intracellular (i.e., those of plasma homocysteine) enrichments. By use of plasma enrichments, insulin decreased methionine rate of appearance (R-a; both methyl- and carbon R-a) by 25% (P < 0.003 vs. basal) and methionine disposal into proteins by 50% (P < 0.0005), whereas it increased homocysteine clearance by similar to 70% (P < 0.025). With intracellular enrichments, insulin increased all kinetic rates, mainly because homocysteine enrichment decreased by similar to 40% (P < 0.001). In particular, transmethylation increased sixfold (P < 0.02), transsulfuration fourfold (P = 0.01), remethylation eightfold (P < 0.025), and clearance eightfold (P < 0.004). In summary, 1) physiological hyperinsulinemia stimulated homocysteine metabolic clearance irrespective of the model used; and 2) divergent changes in plasma methionine and homocysteine enrichments were observed after hyperinsulinemia, resulting in different changes in methionine and homocysteine kinetics. In conclusion, insulin increases homocysteine clearance in vivo and may thus prevent homocysteine accumulation in body fluids. Use of plasma homocysteine as a surrogate of intracellular methionine enrichment, after acute perturbations such as insulin infusion, needs to be critically reassessed
A stepwise approach to assess the impact of clustering cardiometabolic risk factors on carotid intima-media thickness: the metabolic syndrome no-more-than-additive.
BACKGROUND:
Cardiovascular risk factors cluster in the metabolic syndrome (MS), but it is not known whether the risk associated with the syndrome is higher than the sum of its parts. In this study, we explored the relationship between clustering cardiometabolic risk factors and carotid intima-media thickness (c-IMT).
METHODS AND RESULTS:
Cardiovascular parameters and c-IMT were determined in 240 middle-aged healthy participants, divided into groups according to their number of MS components. Higher number of MS components were associated with higher mean c-IMT. Analysis of synergy revealed that c-IMT increase at component clustering fitted an additive model. Redefinition of cutpoints for MS traits, optimized to detect high c-IMT, did not improve the interaction between components. When metabolic factors were rendered independent, a synergistic interaction between factors in increasing the likelihood of having a high c-IMT was detected. Synergic as well was the interaction between metabolic factors with other risk factors that are not consequence of insulin resistance, such as low-density lipoprotein-cholesterol level and smoking habit.
CONCLUSION:
A stepwise approach reveals that the lack of synergy in the interactions between MS components is attributable to their mutual interdependence, possibly owing to the common pathophysiological background. Indeed, if MS is a unique clinical entity, it should be no more than the sum of its parts