177 research outputs found

    Advanced control concepts

    Get PDF
    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used

    Recovery of spinning satellites

    Get PDF
    The behavior of a space tug and a spinning satellite in a coupled configuration was simulated and analyzed. A docking concept was developed to investigate the requirements pertaining to the design of a docking interface. Sensing techniques and control requirements for the chase vehicle were studied to assess the feasibility of an automatic docking. The effects of nutation dampers and liquid propellant slosh motion upon the docking transient were investigated

    Escape of a Uniform Random Walk from an Interval

    Full text link
    We study the first-passage properties of a random walk in the unit interval in which the length of a single step is uniformly distributed over the finite range [-a,a]. For a of the order of one, the exit probabilities to each edge of the interval and the exit time from the interval exhibit anomalous properties stemming from the change in the minimum number of steps to escape the interval as a function of the starting point. As a decreases, first-passage properties approach those of continuum diffusion, but non-diffusive effects remain because of residual discreteness effectsComment: 8 pages, 8 figures, 2 column revtex4 forma

    Precision of readout at the hunchback gene: analyzing short transcription time traces in living fly embryos

    Full text link
    The simultaneous expression of the hunchback gene in the numerous nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in living organisms. A recently developed MS2-MCP technique for imaging nascent messenger RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of the morphogens by the hunchback promoter takes place during very short cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in short time traces of transcription. Additionally, the relationship between the measured signal and the promoter state depends on the molecular design of the reporting probe. We develop an analysis approach based on tailor made autocorrelation functions that overcomes the short trace problems and quantifies the dynamics of transcription initiation. Based on live imaging data, we identify signatures of bursty transcription initiation from the hunchback promoter. We show that the precision of the expression of the hunchback gene to measure its position along the anterior-posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting additional post-transcriptional averaging mechanisms to provide the precision observed in fixed embryos

    Averaged residence times of stochastic motions in bounded domains

    Full text link
    Two years ago, Blanco and Fournier (Blanco S. and Fournier R., Europhys. Lett. 2003) calculated the mean first exit time of a domain of a particle undergoing a randomly reoriented ballistic motion which starts from the boundary. They showed that it is simply related to the ratio of the volume's domain over its surface. This work was extended by Mazzolo (Mazzolo A., Europhys. Lett. 2004) who studied the case of trajectories which start inside the volume. In this letter, we propose an alternative formulation of the problem which allows us to calculate not only the mean exit time, but also the mean residence time inside a sub-domain. The cases of any combinations of reflecting and absorbing boundary conditions are considered. Lastly, we generalize our results for a wide class of stochastic motions.Comment: 7 pages, 3 figure

    Kinetics of diffusion-limited catalytically-activated reactions: An extension of the Wilemski-Fixman approach

    Full text link
    We study kinetics of diffusion-limited catalytically-activated A+B→BA + B \to B reactions taking place in three dimensional systems, in which an annihilation of diffusive AA particles by diffusive traps BB may happen only if the encounter of an AA with any of the BBs happens within a special catalytic subvolumen, these subvolumens being immobile and uniformly distributed within the reaction bath. Suitably extending the classical approach of Wilemski and Fixman (G. Wilemski and M. Fixman, J. Chem. Phys. \textbf{58}:4009, 1973) to such three-molecular diffusion-limited reactions, we calculate analytically an effective reaction constant and show that it comprises several terms associated with the residence and joint residence times of Brownian paths in finite domains. The effective reaction constant exhibits a non-trivial dependence on the reaction radii, the mean density of catalytic subvolumens and particles' diffusion coefficients. Finally, we discuss the fluctuation-induced kinetic behavior in such systems.Comment: To appear in J. Chem. Phy

    Imaging Gold Nanoparticles in Living Cells Environments using Heterodyne Digital Holographic Microscopy

    Full text link
    This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environment. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample's scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cells environments

    Pascal Principle for Diffusion-Controlled Trapping Reactions

    Full text link
    "All misfortune of man comes from the fact that he does not stay peacefully in his room", has once asserted Blaise Pascal. In the present paper we evoke this statement as the "Pascal principle" in regard to the problem of survival of an "A" particle, which performs a lattice random walk in presence of a concentration of randomly moving traps "B", and gets annihilated upon encounters with any of them. We prove here that at sufficiently large times for both perfect and imperfect trapping reactions, for arbitrary spatial dimension "d" and for a rather general class of random walks, the "A" particle survival probability is less than or equal to the survival probability of an immobile target in the presence of randomly moving traps.Comment: 4 pages, RevTex, appearing in PR

    Optimal search strategies for hidden targets

    Full text link
    What is the fastest way of finding a randomly hidden target? This question of general relevance is of vital importance for foraging animals. Experimental observations reveal that the search behaviour of foragers is generally intermittent: active search phases randomly alternate with phases of fast ballistic motion. In this letter, we study the efficiency of this type of two states search strategies, by calculating analytically the mean first passage time at the target. We model the perception mecanism involved in the active search phase by a diffusive process. In this framework, we show that the search strategy is optimal when the average duration of "motion phases" varies like the power either 3/5 or 2/3 of the average duration of "search phases", depending on the regime. This scaling accounts for experimental data over a wide range of species, which suggests that the kinetics of search trajectories is a determining factor optimized by foragers and that the perception activity is adequately described by a diffusion process.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
    • …
    corecore