32 research outputs found

    The case for jets in cataclysmic variables

    Full text link
    For decades cataclysmic variables (CVs) were thought to be one of the few classes of accreting compact objects to not launch jets, and have consequently been used to constrain jet launching models. However, recent theoretical and observational advances indicate that CVs do in fact launch jets. Specifically, it was demonstrated that their accretion-outflow cycle is analogous to that of their higher mass cousins -- the X-ray Binaries (XRBs). Subsequent observations of the CV SS Cygni confirmed this and have consistently shown radio flaring equivalent to that in the XRBs that marks a transient jet. Based on this finding and the emission properties, several studies have concluded that the radio emission is most likely from a transient jet. Observations of other CVs, while not conclusive, are consistent with this interpretation. However, the issue is not yet settled. Later observations have raised a number of questions about this model, as well as about potential alternative radio emission mechanisms. CVs are non-relativistic and many have well-determined distances; these properties would make them ideal candidates with which to address many of our outstanding questions about fundamental jet physics. Here we review the case for jets in CVs, discuss the outstanding questions and issues, and outline the future work necessary to conclusively answer the question of whether CVs launch jets.Comment: To appear in New Astronomy Reviews special volume '100 Years of Astrophysical Jets' (eds. Rob Fender and Ralph Wijers

    One thousand days of SN 2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions

    Full text link
    We present the first observations of a Type I superluminous supernova (SLSN) at ≳1000\gtrsim 1000 days after maximum light. We observed SN 2015bn using the Hubble Space Telescope Advanced Camera for Surveys in the F475W, F625W and F775W filters at 721 days and 1068 days. SN 2015bn is clearly detected and resolved from its compact host, allowing reliable photometry. A galaxy template constructed from these data further enables us to isolate the SLSN flux in deep ground-based imaging. We measure a light curve decline rate at >700>700 days of 0.19±0.030.19 \pm 0.03 mag (100 d)−1^{-1}, much shallower than the earlier evolution, and slower than previous SLSNe (at any phase) or the decay rate of 56^{56}Co. Neither additional radioactive isotopes nor a light echo can consistently account for the slow decline. A spectrum at 1083 days shows the same [O I] and [Ca II] lines as seen at ∌300−400\sim300-400 days, with no new features to indicate strong circumstellar interaction. Radio limits with the Very Large Array rule out an extended wind for mass-loss rates 10−2.7â‰ČM˙/v10â‰Č10−1.110^{-2.7} \lesssim \dot{M}/v_{10} \lesssim 10^{-1.1} M⊙_\odot yr−1^{-1} (where v10v_{10} is the wind velocity in units of 10 km s−1^{-1}). The optical light curve is consistent with L∝t−4L \propto t^{-4}, which we show is expected for magnetar spin-down with inefficient trapping; furthermore, the evolution matches predictions from earlier magnetar model fits. The opacity to magnetar radiation is constrained at ∌0.01\sim 0.01 cm2^2 g−1^{-1}, consistent with photon-matter pair-production over a broad ∌\simGeV-TeV range. This suggests the magnetar spectral energy distribution, and hence the 'missing energy' leaking from the ejecta, may peak in this range.Comment: Accepted for publication in ApJL, updated to match accepted versio

    Radio spectra of bright compact sources at z>4.5

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.High-redshift quasars are important to study galaxy and active galactic nuclei (AGN) evolution, test cosmological models, and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multi-frequency Giant Metrewave Radio Telescope (GMRT) observations of eight z>4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z>4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z>4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultra-steep spectra (USS). Recently a new method has been proposed to identify these objects based on their megahertz-peaked spectra (MPS). Neither method would have identified more than 18% of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.Peer reviewedFinal Published versio

    Statistical properties of dwarf novae-type cataclysmic variables: the outburst catalogue

    Get PDF
    The outburst catalogue contains a wide variety of observational properties for 722 dwarf nova (DN)-type cataclysmic variables (CVs) and 309 CVs of other types from the Catalina Real-time Transient Survey. In particular, it includes the apparent outburst and quiescent V-band magnitudes, duty cycles, limits on the recurrence time, upper and lower limits on the distance and absolute quiescent magnitudes, colour information, orbital parameters and X-ray counterparts. These properties were determined by means of a classification script presented in this paper. The DN in the catalogue show a correlation between the outburst duty cycle and the orbital period (and outburst recurrence time), as well as between the quiescent absolute magnitude and the orbital period (and duty cycle). This is the largest sample of DN properties collected to date. Besides serving as a useful reference for individual systems and a means of selecting objects for targetted studies, it will prove valuable for statistical studies that aim to shed light on the formation and evolution of cataclysmic variables

    AT 2018cow VLBI: No Long-Lived Relativistic Outflow

    Get PDF
    Abstract We report on VLBI observations of the fast and blue optical transient (FBOT), AT 2018cow. At ∌62 Mpc, AT 2018cow is the first relatively nearby FBOT. The nature of AT 2018cow is not clear, although various hypotheses from a tidal disruption event to different kinds of supernovae have been suggested. It had a very fast rise time (3.5 d) and an almost featureless blue spectrum although high photospheric velocities (40,000 km s−1) were suggested early on. The X-ray luminosity was very high, ∌1.4 × 1043 erg s−1, larger than those of ordinary SNe, and more consistent with those of SNe associated with gamma-ray bursts. Variable hard X-ray emission hints at a long-lived “central engine.” It was also fairly radio luminous, with a peak 8.4-GHz spectral luminosity of ∌4 × 1028 erg s−1 Hz−1, allowing us to make VLBI observations at ages between 22 and 287 d. We do not resolve AT 2018cow. Assuming a circularly symmetric source, our observations constrain the average apparent expansion velocity to be <0.49 c by t = 98 d (3σ limit). We also constrain the proper motion of AT 2018cow to be <0.51 c. Since the radio emission generally traces the fastest ejecta, our observations make the presence of a long-lived relativistic jet with a lifetime of more than one month very unlikely

    The luminosity phase space of galactic and extragalactic X-Ray transients out to intermediate redshifts

    Get PDF
    We present a detailed compilation and analysis of the X-ray phase space of low- to intermediate-redshift (0 ≀ z ≀ 1) transients that consolidates observed light curves (and theory where necessary) for a large variety of classes of transient/variable phenomena in the 0.3–10 keV energy band. We include gamma-ray burst afterglows, supernovae, supernova shock breakouts and shocks interacting with the environment, tidal disruption events and active galactic nuclei, fast blue optical transients, cataclysmic variables, magnetar flares/outbursts and fast radio bursts, cool stellar flares, X-ray binary outbursts, and ultraluminous X-ray sources. Our overarching goal is to offer a comprehensive resource for the examination of these ephemeral events, extending the X-ray duration–luminosity phase space (DLPS) to show luminosity evolution. We use existing observations (both targeted and serendipitous) to characterize the behavior of various transient/variable populations. Contextualizing transient signals in the larger DLPS serves two primary purposes: to identify areas of interest (i.e., regions in the parameter space where one would expect detections, but in which observations have historically been lacking), and to provide initial qualitative guidance in classifying newly discovered transient signals. We find that while the most luminous (largely extragalactic) and least luminous (largely Galactic) part of the phase space is well populated at t > 0.1 days, intermediate-luminosity phenomena (L X = 1034–1042 erg s−1) represent a gap in the phase space. We thus identify L X = 1034–1042 erg s−1 and t = 10−4 to 0.1 days as a key discovery phase space in transient X-ray astronomy
    corecore