3 research outputs found

    DNA Methylation in the Diagnosis of Monogenic Diseases.

    Get PDF
    DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results

    Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis

    No full text
    The aim of the present study was to investigate the possible contribution of three common functional polymorphisms in the DNA repair protein X-ray repair cross-complementing group 1 (XRCC1), namely Arg194Trp (rs1799782), Arg280His (rs25489) and Arg399Gln (rs25487), to sporadic amyotrophic lateral sclerosis (SALS). We genotyped 206 Italian SALS patients and 203 matched controls for XRCC1 Arg194Trp, Arg280His and Arg399Gln polymorphisms by means of PCR/RFLP technique, searching for association between any of the studied polymorphisms and disease risk, age and site of onset. We observed a statistically significant difference in XRCC1 Gln399 allele frequencies between SALS cases and controls (0.39/0.28; p=0.001). The present study suggests that the XRCC1 Arg399Gln polymorphism might contribute to SALS risk
    corecore