1,253 research outputs found

    Baryogenesis by Brane-Collision

    Get PDF
    We present a new scenario for baryogenesis in the context of heterotic brane-world models. The baryon asymmetry of the universe is generated at a small-instanton phase transition which is initiated by a moving brane colliding with the observable boundary. We demonstrate, in the context of a simple model, that reasonable values for the baryon asymmetry can be obtained. As a byproduct we find a new class of moving-brane cosmological solutions in the presence of a perfect fluid.Comment: 20 pages, Latex, 2 eps-figure

    Dark energy after GW170817, revisited

    Full text link
    We revisit the status of scalar-tensor theories with applications to dark energy in the aftermath of the gravitational wave signal GW170817 and its optical counterpart GRB170817A. At the level of the cosmological background, we identify a class of theories, previously declared unviable in this context, whose anomalous gravitational wave speed is proportional to the scalar equation of motion. As long as the scalar field is assumed not to couple directly to matter, this raises the possibility of compatibility with the gravitational wave data, for any cosmological sources, thanks to the scalar dynamics. This newly "rescued" class of theories includes examples of generalised quintic galileons from Horndeski theories. Despite the promise of this leading order result, we show that the loophole ultimately fails when we include the effect of large scale inhomogeneities.Comment: Updated with corrections to the gravitational wave propagation coming from higher order terms in the presence of large scale inhomogeneities. These close off any remaining loopholes. References adde

    Fifth forces, Higgs portals and broken scale invariance

    Get PDF
    © 2018 IOP Publishing Ltd and Sissa Medialab. We study the relationship between the strength of fifth forces and the origin of scale breaking in the Standard Model (SM) of particle physics. We start with a light scalar field that is conformally coupled to a toy SM matter sector through a Weyl rescaling of the metric. After appropriately normalizing the fields, the conformally coupled scalar only interacts directly with the would-be Higgs field through kinetic-mixing and Higgs-portal terms. Thus, for the first time, we describe the equivalence of conformally coupled scalar-tensor modifications of gravity and Higgs-portal theories, and we find that the usual tree-level fifth forces only emerge if there is mass mixing between the conformally coupled scalar and the Higgs field. The strength of the fifth force, mediated by the light scalar, then depends on whether the mass of the Higgs arises from an explicit symmetry-breaking term or a spontaneous mechanism of scale breaking. Solar System tests of gravity and the non-observation of fifth forces therefore have the potential to provide information about the structure of the Higgs sector and the origin of its symmetry breaking, setting an upper bound on the magnitude of any explicit scale-breaking terms. These results demonstrate the phenomenological importance (both for cosmology and high-energy physics) of considering how scalar-tensor modifications of gravity are embedded within extensions of the SM

    Urban versus Rural Community Colleges: A National Study of Student Gender and Ethnicity

    Get PDF
    Approximately half of the U.S. population currently lives in suburban locales, one-fourth in big cities, and another fourth in small towns and rural areas. Hodgkinson (2003) indicates that the U.S. population is undergoing an increasing migration into rural areas. This relocation holds many challenging and ominous implications for urban and rural higher education as colleges and universities struggle to meet the divergent needs of shifting demographics. Public community colleges are especially impacted by these changes in student populations

    FeynMG:a FeynRules extension for scalar-tensor theories of gravity

    Get PDF
    The ability to represent perturbative expansions of interacting quantum field theories in terms of simple diagrammatic rules has revolutionized calculations in particle physics (and elsewhere). Moreover, these rules are readily automated, a process that has catalyzed the rise of symbolic algebra packages. However, in the case of extended theories of gravity, such as scalar-tensor theories, it is necessary to precondition the Lagrangian to apply this automation or, at the very least, to take advantage of existing software pipelines. We present a Mathematica code FeynMG, which works in conjunction with the well-known package FeynRules, to do just that: FeynMG takes as inputs the FeynRules model file for a non-gravitational theory and a user-supplied gravitational Lagrangian. FeynMG provides functionality that inserts the minimal gravitational couplings of the degrees of freedom specified in the model file, determines the couplings of the additional tensor and scalar degrees of freedom (the metric and the scalar field from the gravitational sector), and preconditions the resulting Lagrangian so that it can be passed to FeynRules, either directly or by outputting an updated FeynRules model file. The Feynman rules can then be determined and output through FeynRules, using existing universal output formats and interfaces to other analysis packages

    Experimental Optimization of a Free-to-Rotate Wing for Small UAS

    Get PDF
    This paper discusses an experimental investigation conducted to optimize a free-to-rotate wing for use on a small unmanned aircraft system (UAS). Although free-to-rotate wings have been used for decades on various small UAS and small manned aircraft, little is known about how to optimize these unusual wings for a specific application. The paper discusses some of the design rationale of the basic wing. In addition, three main parameters were selected for "optimization", wing camber, wing pivot location, and wing center of gravity (c.g.) location. A small apparatus was constructed to enable some simple experimental analysis of these parameters. A design-of-experiment series of tests were first conducted to discern which of the main optimization parameters were most likely to have the greatest impact on the outputs of interest, namely, some measure of "stability", some measure of the lift being generated at the neutral position, and how quickly the wing "recovers" from an upset. A second set of tests were conducted to develop a response-surface numerical representation of these outputs as functions of the three primary inputs. The response surface numerical representations are then used to develop an "optimum" within the trade space investigated. The results of the optimization are then tested experimentally to validate the predictions
    • …
    corecore