116 research outputs found

    The kinetic mechanism of bacterial ribosome recycling.

    Get PDF
    Bacterial ribosome recycling requires breakdown of the post-termination complex (PoTC), comprising a messenger RNA (mRNA) and an uncharged transfer RNA (tRNA) cognate to the terminal mRNA codon bound to the 70S ribosome. The translation factors, elongation factor G and ribosome recycling factor, are known to be required for recycling, but there is controversy concerning whether these factors act primarily to effect the release of mRNA and tRNA from the ribosome, with the splitting of the ribosome into subunits being somewhat dispensable, or whether their main function is to catalyze the splitting reaction, which necessarily precedes mRNA and tRNA release. Here, we utilize three assays directly measuring the rates of mRNA and tRNA release and of ribosome splitting in several model PoTCs. Our results largely reconcile these previously held views. We demonstrate that, in the absence of an upstream Shine-Dalgarno (SD) sequence, PoTC breakdown proceeds in the order: mRNA release followed by tRNA release and then by 70S splitting. By contrast, in the presence of an SD sequence all three processes proceed with identical apparent rates, with the splitting step likely being rate-determining. Our results are consistent with ribosome profiling results demonstrating the influence of upstream SD-like sequences on ribosome occupancy at or just before the mRNA stop codon

    Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    Get PDF
    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix

    Rational polynomial representation of ribonucleotide reductase activity

    Get PDF
    BACKGROUND: Recent data suggest that ribonucleotide reductase (RNR) exists not only as a heterodimer R1(2)R2(2 )of R1(2 )and R2(2 )homodimers, but also as tetramers R1(4)R2(4 )and hexamers R1(6)R2(6). Recent data also suggest that ATP binds the R1 subunit at a previously undescribed hexamerization site, in addition to its binding to previously described dimerization and tetramerization sites. Thus, the current view is that R1 has four NDP substrate binding possibilities, four dimerization site binding possibilities (dATP, ATP, dGTP, or dTTP), two tetramerization site binding possibilities (dATP or ATP), and one hexamerization site binding possibility (ATP), in addition to possibilities of unbound site states. This large number of internal R1 states implies an even larger number of quaternary states. A mathematical model of RNR activity which explicitly represents the states of R1 currently exists, but it is complicated in several ways: (1) it includes up to six-fold nested sums; (2) it uses different mathematical structures under different substrate-modulator conditions; and (3) it requires root solutions of high order polynomials to determine R1 proportions in mono-, di-, tetra- and hexamer states and thus RNR activity as a function of modulator and total R1 concentrations. RESULTS: We present four (one for each NDP) rational polynomial models of RNR activity as a function of substrate and reaction rate modifier concentrations. The new models avoid the complications of the earlier model without compromising curve fits to recent data. CONCLUSION: Compared to the earlier model of recent data, the new rational polynomial models are simpler, adequately fitting, and likely better suited for biochemical network simulations

    Potential for interdependent development of tRNA determinants for aminoacylation and ribosome decoding.

    Get PDF
    Although the nucleotides in tRNA required for aminoacylation are conserved in evolution, bacterial aminoacyl-transfer RNA synthetases are unable to acylate eukaryotic tRNA. The cross-species barrier may be due to the absence of eukaryote-specific domains from bacterial aminoacyl-transfer RNA synthetases. Here we show that whereas Escherichia coli CysRS cannot acylate human tRNA(Cys), the fusion of a eukaryote-specific domain of human CysRS overcomes the cross-species barrier in human tRNA(Cys). In addition to enabling recognition of the sequence differences in the tertiary core of tRNA(Cys), the fused eukaryotic domain redirects the specificity of E. coli CysRS from the A37 present in bacterial tRNA(Cys) to the G37 in mammals. Further experiments show that the accuracy of codon recognition on the ribosome was also highly sensitive to the A37G transition in tRNA(Cys). These results raise the possibility of the development of tRNA nucleotide determinants for aminoacylation being interdependent with those for ribosome decoding

    The structural basis for pyrophosphatase catalysis

    Get PDF
    AbstractBackground Soluble inorganic pyrophosphatase (PPase), an essential enzyme central to phosphorus metabolism, catalyzes the hydrolysis of the phosphoanhydride bond in inorganic pyrophosphate. Catalysis requires divalent metal ions which affect the apparent pKas of the essential general acid and base on the enzyme, and the pKa of the substrate. Three to five metal ions are required for maximal activity, depending on pH and enzyme source. A detailed understanding of catalysis would aid both in understanding the nature of biological mechanisms of phosphoryl transfer, and in understanding the role of divalent cations. Without a high-resolution complex structure such a model has previously been unobtainable.Results We report the first two high-resolution structures of yeast PPase, at 2.2 and 2.0 å resolution with R factors of around 17%. One structure contains the two activating metal ions; the other, the product (MnPi)2 as well. The latter structure shows an extensive network of hydrogen bond and metal ion interactions that account for virtually every lone pair on the product phosphates. It also contains a water molecule/hydroxide ion bridging two metal ions and, uniquely, a phosphate bound to four Mn2+ ions.Conclusions Our structure-based model of the PPase mechanism posits that the nucleophile is the hydroxide ion mentioned above. This aspect of the mechanism is formally analogous to the ‘two-metal ion’ mechanism of alkaline phosphatase, exonucleases and polymerases. A third metal ion coordinates another water molecule that is probably the required general acid. Extensive Lewis acid coordination and hydrogen bonds provide charge shielding of the electrophile and lower the pKa of the leaving group. This ‘three-metal ion’ mechanism is in detail different from that of other phosphoryl transfer enzymes, presumably reflecting how ancient the reaction is

    Mechanism of Tetracycline Phototoxicity

    Get PDF
    Studies were made to determine factors important in the phototoxicity mechanism of 7 clinically used tetracyclines (TC). The clinical phototoxicity, the rates of photochemical degradation, and the in vitro phototoxicity of the TCs were qualitatively but not quantitatively correlated. Phototoxicity in vitro was partially oxygen-dependent and possibly singlet oxygen is involved. The contribution of photoproducts to the phototoxic process may be the basis for the reported differences between the in vivo action spectrum and the absorption spectrum of demethylchlorotetracycline. A mechanistic model for in vivo phototoxicity is proposed where the absorption of UVA radiation by TC leads to at least two main processes: (i) photosensitization by the drug of biologic molecules to cause phototoxicity; (ii) production of one or more photoproducts which photosensitize by absorption of visible radiation

    Differential Effects of Thiopeptide and Orthosomycin Antibiotics on Translational GTPases

    Get PDF
    SummaryThe ribosome is a major target in the bacterial cell for antibiotics. Here, we dissect the effects that the thiopeptide antibiotics thiostrepton (ThS) and micrococcin (MiC) as well as the orthosomycin antibiotic evernimicin (Evn) have on translational GTPases. We demonstrate that, like ThS, MiC is a translocation inhibitor, and that the activation by MiC of the ribosome-dependent GTPase activity of EF-G is dependent on the presence of the ribosomal proteins L7/L12 as well as the G′ subdomain of EF-G. In contrast, Evn does not inhibit translocation but is a potent inhibitor of back-translocation as well as IF2-dependent 70S-initiation complex formation. Collectively, these results shed insight not only into fundamental aspects of translation but also into the unappreciated specificities of these classes of translational inhibitors

    E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form

    Get PDF
    According to the traditional view, GTPases act as molecular switches, which cycle between distinct ‘on’ and ‘off’ conformations bound to GTP and GDP, respectively. Translation elongation factor EF-Tu is a GTPase essential for prokaryotic protein synthesis. In its GTP-bound form, EF-Tu delivers aminoacylated tRNAs to the ribosome as a ternary complex. GTP hydrolysis is thought to cause the release of EF-Tu from aminoacyl-tRNA and the ribosome due to a dramatic conformational change following Pi release. Here, the crystal structure of Escherichia coli EF-Tu in complex with a non-hydrolysable GTP analogue (GDPNP) has been determined. Remarkably, the overall conformation of EF-Tu·GDPNP displays the classical, open GDP-bound conformation. This is in accordance with an emerging view that the identity of the bound guanine nucleotide is not ‘locking’ the GTPase in a fixed conformation. Using a single molecule approach, the conformational dynamics of various ligand-bound forms of EF-Tu were probed in solution by fluorescence resonance energy transfer. The results suggest that EF-Tu, free in solution, may sample a wider set of conformations than the structurally well-defined GTP- and GDP-forms known from previous X-ray crystallographic studies. Only upon binding, as a ternary complex, to the mRNA programmed ribosome, is the well-known, closed GTP-bound conformation, observed

    Fluorescence Correlation Spectroscopic Study of Serpin Depolymerization by Computationally Designed Peptides

    Get PDF
    Members of the serine proteinase inhibitor (serpin) family play important roles in the inflammatory and coagulation cascades. Interaction of a serpin with its target proteinase induces a large conformational change, resulting in insertion of its reactive center loop (RCL) into the main body of the protein as a new strand within beta-sheet A. Intermolecular insertion of the RCL of one serpin molecule into the beta-sheet A of another leads to polymerization, a widespread phenomenon associated with a general class of diseases known as serpinopathies. Small peptides are known to modulate the polymerization process by binding within beta-sheet A. Here, we use fluorescence correlation spectroscopy (FCS) to probe the mechanism of peptide modulation of alpha(1)-antitrypsin (alpha(1)-AT) polymerization and depolymerization, and employ a statistical computationally-assisted design strategy (SCADS) to identify new tetrapeptides that modulate polymerization. Our results demonstrate that peptide-induced depolymerization takes place via a heterogeneous, multi-step process that begins with internal fragmentation of the polymer chain. One of the designed tetrapeptides is the most potent antitrypsin depolymerizer yet found
    • …
    corecore