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ABSTRACT

Bacterial ribosome recycling requires breakdown of
the post-termination complex (PoTC), comprising a
messenger RNA (mRNA) and an uncharged transfer
RNA (tRNA) cognate to the terminal mRNA codon
bound to the 70S ribosome. The translation factors,
elongation factor G and ribosome recycling factor,
are known to be required for recycling, but there is
controversy concerning whether these factors act
primarily to effect the release of mRNA and tRNA
from the ribosome, with the splitting of the ribo-
some into subunits being somewhat dispensable,
or whether their main function is to catalyze the
splitting reaction, which necessarily precedes mRNA
and tRNA release. Here, we utilize three assays di-
rectly measuring the rates of mRNA and tRNA release
and of ribosome splitting in several model PoTCs.
Our results largely reconcile these previously held
views. We demonstrate that, in the absence of an up-
stream Shine–Dalgarno (SD) sequence, PoTC break-
down proceeds in the order: mRNA release followed
by tRNA release and then by 70S splitting. By con-
trast, in the presence of an SD sequence all three pro-
cesses proceed with identical apparent rates, with
the splitting step likely being rate-determining. Our
results are consistent with ribosome profiling results
demonstrating the influence of upstream SD-like se-
quences on ribosome occupancy at or just before the
mRNA stop codon.

INTRODUCTION

Ribosomes catalyze protein synthesis, a vital cellular ac-
tivity that can be divided into four major steps: initiation,
elongation, termination and ribosome recycling. During

termination, the completed polypeptide chain bound to a
transfer RNA (tRNA) in the P-site of the ribosome within
the pre-termination complex (PreTC) is released from the
tRNA by the hydrolytic action of a release factor bound
to a stop codon in the adjacent A-site. The resulting post-
termination complex (PoTC) contains the now deacylated
tRNA still bound in the P-site and the messenger RNA
(mRNA) that encoded the polypeptide chain. Recycling
of prokaryotic PoTC is catalyzed by the concerted actions
of two essential proteins (1,2), ribosome recycling factor
(RRF) and the guanosine triphosphate (GTP) complex of
elongation factor G (EF-G), the latter being a factor that is
also critical for polypeptide elongation.

Although the recycling requirement for both RRF and
EF-G·GTP has been known for some time (3), the detailed
mechanism by which the two factors effect PoTC break-
down remains controversial (4). One view holds that the
principal biological role of RRF and EF-G·GTP in catalyz-
ing recycling is to effect the release of mRNA and tRNA
from the PoTC (5,6) with the splitting of the 70S ribo-
some into 30S and 50S subunits being somewhat dispens-
able. This view has been strengthened by three recent publi-
cations showing first, that Escherichia coli containing ribo-
somes whose subunits are linked covalently, rendering them
unsplittable and are able to grow with 60% efficiency com-
pared to wild-type (7); second, that ≥50% of protein syn-
thesis initiation events occur on 70S ribosomes rather than
on 30S subunits (8) and third, that neither in vitro nor in
vivo expression of the second cistron of a bicistronic mRNA
requires the presence of active RRF (9). According to the
second view, which is based on rate measurement studies
on model PoTCs (10–14), it is catalysis of the splitting re-
action, which precedes mRNA and tRNA release, which is
the principal role of RRF and EF-G·GTP.

Complicating attempts to resolve this controversy have
been the differences in both the PoTC model systems used
for in vitro studies by the various groups and the measure-
ments utilized in reaching conclusions about the recycling
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mechanism. In addition, there has been a lack of clarity
concerning the full consequences for the kinetic mechanism
of recycling of including a purine-rich six-base sequence,
known as a Shine–Dalgarno (SD) sequence, proximally up-
stream of the deacylated tRNA codon (11–13). The SD se-
quence increases mRNA affinity for the ribosome via base-
pairing with a pyrimidine-rich sequence at the 3′-end of
16S rRNA (15). The potential importance of SD-like se-
quences for recycling is suggested by the results of ribo-
some profiling studies demonstrating the prevalence of such
sequences near the stop codons of transcription attenua-
tion leader peptides (16) and within operons that are closely
followed by a downstream gene (17). Such proximity in-
creases the likelihood that SD-like sequences, by modulat-
ing ribosome recycling, can both prevent the formation of
anti-termination stem-loops, thereby ensuring proper tran-
scription termination (16) and enhance the re-initiation of
translation at distal genes in operons (17).

Here we utilize three assays that directly measure the
rates of mRNA and tRNA release and ribosome splitting in
model PoTCs formed using mRNAs that either lack or con-
tain a proximal upstream SD sequence, denoted the ‘com-
mon case’ and the ‘SD-case’, respectively. We demonstrate
that, in the common case, PoTC breakdown proceeds in the
order: mRNA release followed by tRNA release and then
by 70S splitting, whereas in the SD-case all three processes
proceed with identical apparent rates. We also discuss the
biological significance of these kinetic schemes and possi-
ble reasons for the differences between our conclusions and
those put forward by others earlier.

MATERIALS AND METHODS

More detail is provided in Supplementary Data.

Materials

Materials were either obtained commercially or prepared
by standard methods. mRNAs are listed in Table 1. Both
tRNAPhe and tRNAGly were prepared from yeast.

Complex preparation

PreTC was prepared by incubating ribosomes (1 �M) with
mRNA (2 �M) and N-AcPhe-tRNAPhe (2 �M) in Buffer P
[50 mM Tris–HCl (pH 7.6), 80 mM NH4Cl, 10 mM MgSO4
and 0.2 mM dithiothreitol (DTT)] for 1 h at 37◦C. After in-
cubation, unbound RNAs were removed by centrifugation
at 15 000 rpm and 4◦C with an Amicon-Microcon spin col-
umn (Millipore, with 30 kD cutoff). The remaining solution
was diluted in Buffer A (50 mM Tris–HCl (pH 7.6), 80 mM
NH4Cl, 5 mM MgSO4 and 0.2 mM DTT) and stored frozen
in aliquots.

PoTC was prepared similarly, except that deacylated
tRNAPhe or tRNAGly was used in place of AcPhe-tRNAPhe

and Buffer A replaced Buffer P. PoTC was either used im-
mediately after preparation in stopped-flow experiments or
kept on ice for steady-state measurements made within 2 h
after preparation.

To determine the stoichiometry of tRNAPhe bound per
ribosome, PoTC was prepared by incubating ribosomes (1

�M) in Buffer A for 1 h at 37◦C with [32P]-tRNAPhe (2 �M)
in the presence of either the cognate mRNA-F7 (2 �M) or
mRNA-fMet-STOP (2 �M), which lacks a UUC or UUU
triplet cognate to tRNAPhe (see sequence in Supplementary
Data). After incubation, unbound tRNAs were removed by
centrifugation at 15 000 rpm and 4◦C for 30 s using an
Amicon-Microcon spin column (Millipore, 30 kD cutoff).
The amount of tRNA and ribosomes in the supernatant was
determined by scintillation counting and A260 measurement
(1 A260 unit = 26 pmol ribosome), respectively.

Fluorescence and light scattering measurements

Both steady-state and stopped-flow fluorescence anisotropy
and light scattering measurements were carried out in
Buffer A at 37◦C.

Steady-state fluorescence anisotropy. Experiments were
conducted on a Fluorolog-3 spectrofluorometer (Horiba
Jobin Yvon). Both proflavin- and fluoroscein-labeled sam-
ples were excited at 462 nm, with fluorescence emission
monitored at 512 and 492 nm, respectively. Fluorescence
anisotropy was measured using an L-format as described
(18).

Stopped-flow experiments. Rate experiments were per-
formed on a KinTek SF-300X stopped-flow spectrofluo-
rometer. The indicated concentrations of all components
are final after mixing. GTP was present at 0.5 mM when
utilized. Apparent rate constants (kapp) were determined by
fitting results to Equation (1) for each independent experi-
ment, using Origin (OriginLab).

A(t) = A0 + A1 × e−kt (1)

Fluorescence anisotropy. Both proflavin- and fluoroscein-
labeled samples were excited at 462 nm and fluorescence was
monitored using a pair of 495 nm long-pass filters. thG was
excited at 340 nm and monitored using a pair of 425 nm
long-pass filters. Fluorescence anisotropy was measured us-
ing a T-format as described (18,19).

Light scattering was measured as described (20). Excita-
tion was at 436 nm and output was monitored without using
a filter.

RESULTS

mRNA and tRNA binding to the ribosome can be monitored
by increases in fluorescence anisotropy

The fluorescence anisotropies of fl-mRNA-F7 and fl-
mRNA-F10 (Table 1) increase on binding to a 70S ribo-
some, but the increase for fl-mRNA-F7 at saturating ribo-
some concentration (Supplementary Figure S1A) is about
double that for fl-mRNA-F10 (data not shown), likely be-
cause the fluorescein fluorophore within the mRNA chan-
nel is more tightly bound at position +7 than at position
+10. This larger change led us to choose fl-mRNA-F7 for
many of the studies reported below. The results displayed
in Supplementary Figure S1A allowed calculation of Kd
values of 0.016 and 0.075 �M for fl-mRNA-F7 binding
to 70S ribosomes in the presence and absence of cognate
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Table 1. mRNA sequencesa

mRNA Sequence

mRNA-F7 AUAGCAUCACAUAUCUUCUAAC
fl-mRNA-F7 AUAGCAUCACAUAUCUUCUAAC-fld

fl-mRNA-F10 AUAGCAUCACAUAUCUUCUAACAGU-fl
mRNA-thGb AUACGAUCACAUAthGCUUCUAACAUGCCGGCCAUCCAAAC
mRNA-G7 AUAGCAUCACAUAUCGGCUAAC
fl-mRNA-G7 AUAGCAUCACAUAUCGGCUAAC-fl
mRNA-SD-F7c AUAAGGAGGUAAAAUUCUAAC
fl-mRNA-SD-F7c AUAAGGAGGUAAAAUUCUAAC-fl
mRNA-fMet-Stop GGGAAUCCAAAAAUCUAAAAGUUAACUACAUACUAUGUAACGAUUACUAGAU

CUCCUCCACUUAACGCGUCUGCAGGCAUGCAAGCU(A)26GCUUG

aCognate sequences to deacylated tRNAs and adjacent UAA stop codons are in bold.
b thG position is in bold.
cUpstream SD sequence is in bold.
dfl, fluorescein

tRNAPhe, respectively. Similar results were obtained for
other fluorescent-labeled mRNAs employed in this study
(mRNA-thG, fl-mRNA- G7, fl-mRNA-SD-F7, Supplemen-
tary Table S1). The SD sequence AGGAGG, located 9–14
nt upstream of the stop codon (mRNA-SD-F7, Table 1), in-
creases the strength of mRNA binding to the ribosome, as
measured by fluorescence anisotropy, and the magnitude of
the anisotropy change that accompanies binding (Supple-
mentary Table S1).

Fluorescence anisotropy can also be used to measure
proflavin-labeled tRNAPhe [tRNAPhe(prf)] binding to the ri-
bosome (21). Since deacylated tRNA has a much higher
affinity for the P-site than for either the A-site or the E-
site (22–24), and, compared with E. coli tRNAPhe, the
yeast tRNAPhe utilized in this work has an equivalent
P-site affinity but a much lower E-site affinity (23,24),
such binding is expected to be primarily to the P-site. In
accord with this expectation, the tRNAPhe(prf) binding
we measure by fluorescence anisotropy is strongly codon-
dependent, as shown by the 4-fold lower anisotropy change
observed when mRNA-F7 is replaced by non-cognate
mRNA-G7 (Supplementary Figure S1B). These anisotropy
results are fully consistent with results measuring the sto-
ichiometry of [32P]-tRNAPhe bound to a PoTC prepared
with cognate mRNA-F7 (0.85/ribosome) versus the value
of 0.23/ribosome found when non-cognate mRNA-fMet-
STOP replaced mRNA-F7. Such codon dependence is char-
acteristic of P-site binding. In contrast, E-site binding is es-
sentially codon independent (22–25).

RRF/EF-G-induced breakdown of common post-termination
complexes (PoTCs)

In earlier studies of ribosome recycling kinetics, PoTC
complexes prepared either by release of peptide from pre-
termination complexes or by direct binding of deacylated
tRNA showed no differences in the results obtained (12,13).
In this work, we used the latter method to prepare three
nearly identical PoTCs containing 70S ribosomes and mR-
NAs lacking an upstream SD sequence, which we define as
common PoTCs. These PoTCs, containing either fl-mRNA-
F7 and tRNAPhe (denoted PoTC-F7-fl), or mRNA-F7 and
tRNAPhe(prf) (denoted PoTC-F7-prf), or mRNA-F7 and
tRNAPhe (denoted PoTC-F7), were used to determine rates

of the three processes, mRNA release, tRNA release and
70S splitting, which occur during RRF and EF-G·GTP-
dependent PoTC breakdown. Decreases in the fluorescence
anisotropies of PoTC-F7-fl (Figure 1A and D) and PoTC-
F7-prf (Figure 1B and E) were used to measure monopha-
sic rates of mRNA release (kmRNA, Supplementary Figure
S2A and D) and tRNA release (ktRNA, Supplementary Fig-
ure S2B and E), respectively. Decreases in light scattering
(12) measured monophasic rates of 70S splitting (ksplit, Fig-
ure 1C and F; Supplementary Figure S2C and F). The re-
sults displayed in Figure 1C and F were obtained using
PoTC-F7, but essentially identical results were obtained
using PoTC-F7-fl or PoTC-F7-prf. For all three measure-
ments, no such decreases were seen if a PreTC, containing
N-AcPhe-tRNAPhe in place of tRNAPhe, was mixed with
RRF and EF-G·GTP, consistent with the known failure
of RRF to bind to a ribosome containing P-site bound
peptidyl-tRNA (26–29).

Suitable control experiments showed that mRNA and
tRNA release proceeded much more slowly (two to three
orders of magnitude) and to lesser extents in the presence
of either RRF or EF-G·GTP alone, or in the absence of
both factors (Supplementary Figure S3A and B). Rapid
mixing of PoTC-F7-fl with a large molar excess of unlabeled
mRNA-F7 also led to fl-mRNA-F7 release (Supplementary
Figure S3C), demonstrating that mRNA bound within the
PoTC is in mobile equilibrium with mRNA in solution, in
agreement with earlier results of Peske et al. (13), but the
rate of release is some 10-fold lower than what was found
by mixing with RRF (2 �M) and EF-G·GTP (3 �M) (Fig-
ure 1A and D). Above we have summarized the evidence
that deacylated tRNA binding in our model PoTC complex
occurs primarily to the P-site rather than to the E-site. The
result that all of the traces of deacylated tRNA release as
a function of time (Figure 1B and E; Supplementary Fig-
ure S2B and E) are well fit by single exponentials provides
additional evidence that E-site binding is minimal, since sat-
isfactory fitting of tRNA release traces would likely require
two exponentials if E-sites were occupied to a significant ex-
tent.

The results presented in Figure 1 permitted determina-
tion of two sets of kapp values for each process, one at fixed
EF-G (3.0 �M) and varying RRF concentrations (Figure
1A–C) and the other at fixed RRF (2.0 �M) and varying
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Figure 1. Rates of RRF/EF-G-induced PoTC-F7 breakdown. As measured by the decrease in the fluorescein (star) anisotropy of fl-mRNA-F7 (A and
D) or the proflavin (star) anisotropy of tRNAPhe(prf) (B and E) or light scattering (C and F) on rapid mixing of PoTC-F7 (0.2 �M) with EF-G·GTP and
RRF. (A–C) EF-G·GTP (2 �M) and varying concentrations of RRF. (D–F) RRF (3 �M) and varying concentrations of EF-G·GTP. 70S is fully associated
(100%) at zero time for all curves in (C) and (F), as indicated at the highest concentrations of RRF (8 �M) and EF-G (6 �M), respectively. For clarity, the
100% values at zero time are offset by 10% for each lowering of RRF and EF-G concentrations. In both (C) and (F), association decreased to 15% at 20 s
for all but the lowest concentrations of RRF (0.5 �M) and EF-G (0.75 �M).

EF-G concentrations (Figure 1D–F). These values were fit
to the Michaelis–Menten equation (Equation 2), where F
is either EF-G or RRF. The Km values for each protein fac-
tor measured for each of the three processes were essentially
identical, although somewhat lower for RRF than for EF-G
(Km

RRF 0.7–0.8 �M; Km
EF-G 1.1–1.2 �M). The two kcat val-

ues determined for each process in both sets were identical,
but the three processes within each set had kcat values that
differed markedly from one another (Supplementary Table
S2). These latter values (kcat,mRNA 26 ± 3 s−1; kcat,tRNA 4.7
± 0.3 s−1; kcat,split 0.58 ± 0.04 s−1) demonstrate clearly that
breakdown of the PoTC proceeds in the following order:
mRNA release, tRNA release and ribosome splitting.

kapp = kcat[F]/(KF
m + [F]) (2)

The generality of this conclusion for model PoTC break-
down could be limited by two possible concerns. The first is
that in fl-mRNA-F7, the sequence corresponding to the 3′-
untranslated region of mRNA (3′-UTR) following the stop
codon is only 1 nt long. This is a consequence of placing
the fluorescent label at the 3′-end at the +7 position from
the P-site so that it yields an easily measurable anisotropy
change on binding to the ribosome, presumably because at
position +7 the label is held tightly within the mRNA chan-

nel. Could mRNA dissociation be unusually fast because of
the shortness of the 3′-UTR? Second, could the slightly dif-
ferent PoTCs used in obtaining the results in Figure 1, nec-
essary because of the overlap in the emission spectra of flu-
orescein and proflavin, affect the kinetic order of the three
events?

To confront these concerns, we carried out an additional
set of PoTC breakdown experiments using an additional
common PoTC, denoted PoTC-thG-prf. PoTC-thG-prf con-
tains an mRNA, denoted thG-mRNA, in which the emis-
sive, isosteric guanosine surrogate thG (30,31) is placed at
the −2 position from the P site. It also has an 18-nt long
3′-UTR, more than enough to completely fill the mRNA
channel. In addition, because thG emission is easily dis-
tinguishable from proflavin emission, and light scattering
change could be monitored at a wavelength different from
both emissions, all three processes could be monitored us-
ing the same PoTC sample. The results, measured at near
saturating concentrations of RRF and EF-G (Figure 2A),
are virtually identical to those obtained using mRNA-F7 or
fl-mRNA-F7 (Table 2). We conclude that neither of the po-
tential concerns mentioned above is problematic for model
PoTC breakdown and that generally valid kinetic results are
obtained with the shorter mRNAs, mRNA-F7 and its flu-
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Figure 2. Direct comparisons of rates of RRF/EF-G-induced PoTC (0.2
�M) breakdown on rapid mixing with 3 �M EF-G·GTP and 2 �M RRF.
(A) PoTC-thG, as measured by the decrease in mRNA-thG anisotropy
(blue line), tRNAPhe(prf) anisotropy (black line) or light scattering (red
line). (B) PoTC-SD-F7, tRNAPhe(prf) anisotropy (black line) or light scat-
tering (red line); PoTC-SD-F7-fl, mRNA-thG anisotropy (blue line). Ini-
tial values of mRNA and tRNA anisotropy are offset by +20 and +10%,
respectively, for clarity.

orescent derivative, fl-mRNA-F7. Consequently, these mR-
NAs are employed in the studies described below except as
otherwise noted.

Modulation of RRF/EF-G-induced common PoTC break-
down

Having established the kinetic mechanism of breakdown for
common PoTCs, we turned our attention to determining
how changes in a variety of pertinent reaction variables, or
in the identity of the tRNA contained in the PoTC, affect
values of kmRNA, ktRNA and ksplit, as presented in Table 2.

Added initiation factor 3 (IF3). IF3 binds 30S subunits
more tightly than 70S ribosomes (32) and there is general
agreement in the literature that IF3 aids RRF/EF-G stim-
ulation of ribosome splitting during PoTC breakdown only
indirectly, by preventing the reassociation of subunits af-
ter ribosome splitting (11,12,33), rather than by a direct
interaction with the 70S ribosome, as proposed originally
(10,13). However, there has been disagreement over whether
IF3 stimulates mRNA and tRNA dissociation during ri-
bosome recycling. Our rate measurements (Table 2) clearly
show that while IF3 has no effect on the rate of either
mRNA or tRNA dissociation, it does have a minor effect
in slightly increasing the extent of ribosome splitting, from
85 ± 4 to 98 ± 3% (Supplementary Figure S4A). In addi-
tion, close inspection of the time dependence of ribosome
splitting shows that it is better fit as a biphasic exponential
change, in which the major, more rapid phase has a ksplit
value indistinguishable from that measured in the absence
of IF3 (Table 2). We attribute the minor slower phase to the
effect of IF3 in inducing further ribosome splitting via its
preferential binding to the 30S subunit.

Is GTP hydrolysis necessary? Although EF-G is clearly
necessary for PoTC breakdown, prior to the present work
there were no data available unambiguously indicating
whether GTP hydrolysis is required for either mRNA or
tRNA release. To address this question we carried out

our standard three rate measurements, but substituting ei-
ther guanosine diphosphate (GDP) or GDPNP, a non-
hydrolyzable GTP analog in which the oxygen bridging the
beta and gamma phosphoryl groups is replaced by an NH,
for GTP. None of the reactions proceed when GDP re-
places GTP, and no splitting is observed when GDPNP
replaces GTP. This latter result confirms earlier observa-
tions that GTP hydrolysis is required for ribosome split-
ting (11,13,14,34). In contrast, neither the rate (Table 2)
nor the extent of tRNA dissociation is affected by substi-
tuting GDPNP for GTP. Such substitution has an interme-
diate effect on mRNA, reducing both the extent and rate of
mRNA-F7 release from the PoTC (Supplementary Figure
S4B), and, in complementary fashion, permitting partial
binding of mRNA-F7 to 70S ribosomes, a process that is al-
most completely prevented in the presence of GTP (Supple-
mentary Figure S5). These results indicate that both tRNA
and mRNA release from the PoTC requires binding of EF-
G in the EF-G·GTP conformation (35,36) and that, while
mRNA release is significantly hindered in the absence of
GTP hydrolysis, tRNA release is unaffected.

Antibiotic inhibition. The antibiotics fusidic acid (FA),
thiostrepton (ThS) and viomycin (Vio) are known to inhibit
mRNA and tRNA release (37) and ribosome splitting (14)
during PoTC breakdown. Hirokawa et al. (37) have argued
that comparing Ki values for the three steps permits an in-
ference as to the order in which the steps occur, with the
slowest step having the lowest Ki and the fastest step having
the highest Ki. This conclusion is based on the assumption
that a given antibiotic captures a competent intermediate
in PoTC breakdown. Since ribosome splitting is the slow-
est step in our standard assay, the vacant 70S ribosome is a
competent intermediate, and a concentration of an antibi-
otic sufficient to inhibit splitting would be insufficient to
inhibit either mRNA or tRNA dissociation. Accordingly,
these steps would necessarily have higher Ki values. We de-
termined apparent Ki values under our standard assay con-
ditions, giving the results summarized in Table 3. These val-
ues clearly support our results showing that mRNA and
tRNA dissociation precede ribosome splitting, but don’t al-
low a clear inference regarding the order of mRNA ver-
sus tRNA dissociation. The values of Ki determined by Hi-
rokawa et al. (37) for mRNA and tRNA release are also
shown in Table 3. We defer consideration of differences in
the two sets of results to the ‘Discussion’ section.

tRNA identity. PoTCs formed in vivo will, in the aggregate,
contain a distribution of all elongator tRNA isoacceptors,
raising the question of whether the identity of the elongator
tRNA, tRNAPhe in the above studies, might influence the
order of PoTC breakdown, due perhaps to differences in the
thermodynamic stabilities of codon:anticodon base pairing.
We examined this question by comparing PoTC breakdown
rates when the UUC codon in mRNA-F7, which forms one
G–C base pair with its cognate tRNAPhe, is replaced by a
GGC codon in mRNA-G7, which forms three G–C base
pairs with its cognate tRNAGly

GCC isoacceptor. This sub-
stitution does not change the order of PoTC breakdown
but reduces the rates of both mRNA release and tRNA re-
lease by 1.5- to 1.8-fold (Table 2). While the reduced rate of
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Table 2. Apparent rate constants (s−1)a

mRNA/tRNA Variable kmRNA
c ktRNA ksplit

F7/Phe 25 ± 1 4.3 ± 0.2 0.47 ± 0.04e

thG/Phe 26 ± 2 4.1 ± 0.3 0.39 ± 0.05
G7/Gly 13.8 ± 0.8 2.9 ± 0.2 0.44 ± 0.02
SD-F7/Phe 0.51 ± 0.04 0.53 ± 0.04 0.50 ± 0.04
F7/Phe 2 �M IF3 25 ± 1 4.4 ± 0.3 0.50 ± 0.03f

0.12 ± 0.02
0.5 mM GDPNPb 11 ± 1d 4.3 ± 0.2 No reaction
7.5 mM Mg2+ 3.6 ± 0.1 0.49 ± 0.03 0.074 ± 0.004
3 mM Mg2+ n.d. n.d. 2.8 ± 0.1
Non-His tagged EF-G 25 ± 1 4.2 ± 0.3 0.30 ± 0.03

aStandard conditions: 2 �M RRF, 3 �M His-tagged EF-G, 5 mM Mg2+, 0.5 mM GTP. Error ranges are standard deviations for 3–10 independent
measurements.
bReplaces GTP.
cmRNA dissociation rates were measured with fl-F7-mRNA, fl-G7-mRNA, fl-SD-F7-mRNA or thG-mRNA.
dPartial release of mRNA.
eThere was no significant difference in measured rate constant when fl-mRNA-F7 replaced mRNA-F7 or when Phe-tRNAPhe(prf) replaced Phe-tRNAPhe.
fMajor reaction phase (amplitude 77 ± 6% of total change).

Table 3. Apparent Ki values (�M)a

Antibiotic mRNA dissociation tRNA dissociation 70S splitting

Thiostepton 23 ± 2 16 ± 2 3.3 ± 0.8
12.5c 92.3c 6d

Viomycin 2.0 ± 0.4 1.8 ± 0.2 0.6 ± 0.1
25c 58.3c 50d

Fusidic acid No inhibitionb No inhibitionb <0.5
10c No inhibitionc 15d

aValues are for this work, standard conditions as in Table 2, unless otherwise indicated.
bMeasured at 100 �M FA.
cref. (37);
dref. (33).

mRNA release might well be a consequence of more stable
codon:anticodon base pairing, the reduced rate of tRNA
release, which follows mRNA release, must reflect differen-
tial interactions with the ribosome of tRNAGly

GCC versus
tRNAPhe. As expected, the rate of ribosome splitting is the
same for the two complexes, since splitting only occurs fol-
lowing mRNA and tRNA dissociation. This suggests that
the kinetic order of the rate processes in PoTC breakdown
is likely to be the same for all elongator tRNAs.

Other variables. Some other studies of PoTC breakdown
have employed higher Mg2+ concentrations than the 5 mM
we employ in our standard assay. Accordingly, for compar-
ison purposes, we determined the effects of raising Mg2+

concentration on PoTC breakdown. The results demon-
strate that the rates of all three processes were much reduced
(5- to 7-fold) at the higher (7.5 mM) Mg2+ concentration.
Conversely, lowering Mg2+ to 3.0 mM raised the rate of ri-
bosome splitting 6-fold (Table 2). This very marked increase
in the rate of 70S splitting as [Mg2+] is lowered from 7.5 to
3.0 mM is similar to what has been observed previously for
uncatalyzed splitting of vacant 70S ribosomes (38). Lastly,
we showed that replacing the N-terminal His-tagged EF-G
we use in our standard assay with native EF-G directly pre-
pared from E. coli cells has only a small effect on ksplit and
no effect on either kmRNA or ktRNA (Table 2).

RRF/EF-G-induced breakdown of a PoTC containing an up-
stream SD sequence

Some prior studies of recycling have employed model
PoTCs made with mRNAs containing upstream SD se-
quences (12,13), raising the question of whether such se-
quences might influence the mechanism of ribosome recy-
cling (4). Although an upstream SD sequence does not af-
fect the rate of ribosome splitting (12), no results have been
reported directly measuring the relative effects of an up-
stream SD sequence on the kinetics of mRNA or tRNA
release from a PoTC. To fill this gap, we compared PoTC
breakdown rates for complexes made with an mRNA con-
taining an upstream SD sequence (mRNA-SD-F7 or fl-
mRNA-SD-F7) with those determined above for mRNA-
F7 and fl-mRNA-F7 (Table 2).

The inclusion of the upstream SD sequence in fl-mRNA-
SD-F7 results in a 7-fold higher affinity for the ribosome
versus fl-mRNA-F7 (Supplementary Table S1) and de-
creased rates of both mRNA (50-fold) and tRNA release
(10-fold), consistent with an earlier study showing that
SD–anti-SD interactions strengthen binding of mRNA and
tRNA to the PoTC (11). In contrast, the rate of ribosome
splitting is unchanged by the presence of the upstream SD
sequence, also in agreement with prior results (12,13). Im-
portantly, the rates of all three processes measured with ei-
ther mRNA-SD-F7 or fl-mRNA-SD-F7 are equal to each
other (Figure 2B), suggesting that all three processes have a
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common rate-determining step. A plausible interpretation
of these results is that the presence of the upstream SD
sequence significantly alters the kinetic sequence of PoTC
breakdown, such that rate-determining ribosome splitting
is followed by rapid release of mRNA and tRNA from the
30S subunit (see ‘Discussion’ section).

DISCUSSION

PoTC breakdown requires the combination of RRF and
EF-G to catalyze three dissociation processes, mRNA and
tRNA release and splitting of the 70S ribosome into 30S
and 50S subunits. In this paper, we present the first study
that reports parallel rate measurements of all three pro-
cesses for common model PoTCs that lack a SD sequence
immediately upstream of the termination codon and that,
moreover, directly measure mRNA release. Our results un-
equivocally demonstrate that, for the common PoTCs used
in this work, the three processes proceed in the order:
mRNA release, followed by tRNA release, followed by 70S
splitting, the latter being the only process that absolutely
requires GTP hydrolysis. In contrast, in the presence of an
upstream SD sequence, which strengthens mRNA binding
to the ribosome, both mRNA and tRNA release is slowed
to the point that they proceed with the same rate as 70S
splitting. Below we use these results, in combination with
other related studies, to propose mechanisms for RRF/EF-
G·GTP -induced breakdown of PoTCs in both the absence
(common case) and presence (SD-case) of an upstream SD
sequence.

Structural studies of RRF/EF-G·GTP-induced PoTC
breakdown demonstrate that the ribosome is in a rotated
state relative to a bare 70S ribosome and the deacylated
tRNA is bound in a hybrid P/E position (29,39–41). A
total of 14 bridges between 30S and 50S subunits have
been identified within 70S ribosomes (39). The B2a and
B3 bridges are disrupted in the presence of RRF and EF-
G·GTP (39,40,42–44), disruptions that eventually lead to
70S splitting. Time-resolved studies have strongly suggested
that 30S association with 50S proceeds via a multi-step pro-
cess, with some bridges forming before others (45,46). Di-
rect evidence that 70S splitting also proceeds via a multi-
step process comes from cryoelectron microscopy studies
of Fu et al. (40) who observed intermediate conformations
during RRF/EF-G·GTP-dependent model PoTC break-
down, albeit one containing an upstream SD-sequence.
Our results obtained with mRNAs lacking an SD sequence
(common case) suggest that RRF/EF-G·GTP binding to
the PoTC disrupts not only some ribosomal intersubunit
bridges, but also the mRNA:tRNA codon:anticodon and
tRNA:ribosome interactions. We speculate that, for the
common case (Figure 3A), these initial disruptions are suf-
ficient to induce mRNA release followed by tRNA release,
but that disruption of additional intersubunit bridges are
required for full splitting of the now vacant 70S ribosomes,
which proceeds more slowly. A consequence of this specu-
lation is that the bacterial cell would contain a significant
steady-state population of vacant 70S ribosomes during ac-
tive protein synthesis, some of which could participate di-
rectly in the initiation of protein synthesis on other mR-
NAs, in accord with results demonstrating that 70S split-

Figure 3. Proposed mechanisms of PoTC breakdown. (A) In the common
case, partial disruptions of subunit:subunit contacts are sufficient to induce
mRNA release followed by tRNA release, and 70S splitting. (B) In the SD-
case, all three processes proceed at the same rate, with 70S splitting likely
to be rate-determining.

ting is not essential for such initiation (7-9). Indeed, recent
results of ours demonstrate that RRF/EF-G·GTP binding
stimulates mRNA and tRNA release from a model PoTC
made using a ribosome with tethered subunits (7,47).

mRNA binding to the ribosome is strengthened in the
SD-case, and we propose (Figure 3B) that tRNA:mRNA in-
teraction on the ribosome is maintained until full 70S split-
ting is accomplished, after which mRNA and tRNA are
rapidly released into solution. This is consistent with the re-
sults of Karimi et al. (10) showing that tRNA dissociation
from a model PoTC containing an upstream SD sequence
requires GTP hydrolysis. In contrast, tRNA dissociation in
the common case does not require GTP hydrolysis, since it
precedes 70S splitting (Table 2). The dramatic differences in
the mechanism of PoTC breakdown that we observe for ri-
bosomes programmed with mRNA-F7 versus mRNA-SD-
F7 (Table 2) raise interesting questions, to be addressed in
future studies, as to how these differences would be affected
by varying both the SD sequence and the spacing between
the SD sequence and the stop codon.

Importantly, these proposed mechanisms for PoTC
breakdown are consistent with ribosome profiling results
determined in bacterial cells, which show that a strong
SD-like sequence proximally upstream of the termination
codon markedly increases ribosome occupancy at or just be-
fore the mRNA stop codon (16). Given the comparatively
slow rate of ribosomal splitting [1.5–3 s−1 at 3 mM Mg2+,
Table 4; an in vivo rate of 5 s−1 has recently been estimated
by Borg et al. (48)], as compared with the average rate of
polypeptide elongation [∼20 codons s−1 (49)], mRNA re-
lease that occurs simultaneously with 70S splitting, as in
the SD-case, would be predicted to lead to high ribosome
occupancy at the stop codon, as observed by Li et al. (16).
By contrast, the much more rapid release of mRNA com-
pared with ribosomal splitting in the common case would
keep pace with elongation, and result in a lower occupancy
at the stop codon of a typical mRNA lacking an upstream
SD-like sequence. Indeed, such occupancies are observed to
be only slightly elevated as compared with other open read-
ing frame regions of mRNA (16,50–55).
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Table 4. Rate constants for PoTC breakdown, 37◦C

Conditions kapp (s−1)

Source # SD IF3 Mg2+ mRNA release tRNAPhe release Ribosome splitting

This work 1 − − 3.0 2.8 ± 0.1
2 − − 5.0 25 ± 1 4.3 ± 0.2 0.47 ± 0.04
3 + − 5.0 0.51 ± 0.04 0.51 ± 0.04 0.50 ± 0.04
4 − + 5.0 25 ± 1 4.4 ± 0.3 0.36 ± 0.02
5 − − 7.5 4.3 ± 0.9 0.6 ± 0.1 0.09 ± 0.02

ref. (13) 6 + + 7.0 0.03 ± 0.01 0.04 ± 0.01 0.3 ± 0.1b

7 − + 7.0 0.3 ± 0.1b

ref. (12) 8 + + 3.0 1.51 ± 0.06
9 + − 3.0 1.60 ± 0.05
10 (+)a + 3.0 1.47 ± 0.06

ref. (11) 11 + + 7.0 0.07
ref. (48) 12 + − 5.0 0.6c

1.4

aWeak SD sequence.
bDetermined using a FRET assay, the validity of which is questionable––see ‘Discussion’ section.
cUpper value: 1 �M RRF, 3 �M EF-G; lower value: 3 �M RRF, 3 �M EF-G.

Comparison with prior proposed kinetic mechanisms

The kinetic mechanism for the common case proposed in
Figure 3A differs from those proposed by other groups
who have studied this process in model PoTCs (4,11–
13,33,34,56). Peske et al. (13) propose a model, with which
Zavialov et al. (11) concur, in which 70S splitting is followed
by simultaneous release of mRNA and tRNA from the 30S
subunit, with the latter process being stimulated by IF3. On
the other hand, Kaji et al. (4,37,41,47) posit that tRNA is
released first, followed by 70S splitting and mRNA release,
with some vagueness as to the order of the latter two reac-
tions. Below we present an analysis of the reasons for these
differences.

A summary of apparent rate constants determined for
RRF/EF-G·GTP-dependent ribosome recycling is pre-
sented in Table 4. The only previous study reporting deter-
minations for all three processes is that of Peske et al. (13)
(Table 4, #6) but, importantly, it is for an mRNA contain-
ing a strong upstream SD sequence. These authors showed
that the presence of an upstream SD sequence does not af-
fect the rate constant they report for 70S splitting (Table 4,
#7) and used this result to claim that ‘the SD sequence has
no influence on the mechanism of ribosome recycling.’ Our
results, demonstrating the very large effect the SD sequence
has on the rates of both mRNA and tRNA release (Table
4, #2, #3), clearly demonstrate that this is not so. Neverthe-
less, Peske’s results (Table 4, #6) should be comparable to
ours (Table 4, #3) for PoTCs containing an upstream SD.
Indeed, an important similarity for both sets of results is
that the rates of mRNA and tRNA release are indistinguish-
able from one another. It is true that Peske’s rates are much
slower than ours, but this is mainly attributable to the higher
[Mg2+] in Peske’s experiments, 7 mM in #6 versus 5 mM in
#3 (Table 4). Indeed, based on the results in Table 4 showing
that the presence of a strong SD sequence does not affect the
rate of ribosome splitting (Table 4, #2 versus #3; #6 versus
#7, #8 versus #10) but does result in all three processes pro-
ceeding at the same rate (Table 4, #3), we estimate that the
rate constants for mRNA and tRNA dissociation for ribo-
somes programmed with mRNA-SD-F7 or mRNA-fl-SD-

F7 at 7.5 mM Mg2+ will both be equal to 0.09 ± 0.02 s−1,
values that are similar in magnitude to those previously re-
ported at 7.0 mM Mg2+ for mRNA release (Table 4, #6) and
tRNA release (Table 4, #6, #11). The one significant differ-
ence in comparing Peske’s results (Table 4, #6) to ours (Ta-
ble 4, #3) is that Peske reports that 70S splitting occurs ∼10
times more rapidly than mRNA or tRNA release, whereas
our results show all three rates to be the same. We attribute
this apparent discrepancy to the fluorescence resonance en-
ergy transfer (FRET) assay Peske et al. employed to mea-
sure the rate of 70S splitting. In their work, 50S subunits and
30S subunits were labeled with a fluorescence donor and a
fluorescence quencher, respectively, on surface lysines (3–
5/per subunit) and the rate constant for increase in fluores-
cence intensity during PoTC breakdown, obtained by fitting
the results to a single exponential, was interpreted as mea-
suring the rate of 70S splitting. We consider this approach
to be problematic, since FRET changes could arise from
more rapid conformational changes in the 70S ribosome not
resulting in splitting, especially given the large number of
potential FRET interactions that could contribute to the
overall FRET signal. In contrast, the light scattering ap-
proach that we employ provides a much more straightfor-
ward measure of 70S splitting, and yields rate constants that
are reasonably consistent between our results (Table 4, #1)
and those of Pavlov et al. (12) (Table 4, #8–#10) and Borg
et al. (48) (Table 4, #12). We also note that Pavlov et al. (12)
report that ribosomal splitting is ∼3- to 4-fold slower when
cognate initiator tRNAMet replaces cognate tRNAPhe in the
P-site of a PoTC, in both the common and SD-cases, which
differs from our result showing the splitting rate to be un-
affected by substituting cognate tRNAGly for tRNAPhe (Ta-
ble 2, common case). It is possible that this difference arises
from the unique interactions of initiator tRNAMet with the
P-site that are not found with elongator tRNAs (57–59).

While the model PoTCs employed by Peske et al. (13),
Zavialov et al. (11), Pavlov et al. (12) and ourselves are
similar to one another in having one ribosome bound per
mRNA, Hirokawa et al. (37) employ a completely different
model, prepared by puromycin-treatment of polysomes iso-
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lated from cells. In addition, Hirokawa et al. infer a kinetic
mechanism of PoTC recycling based on the different con-
centrations of an antibiotic needed for inhibition of specific
steps in PoTC breakdown, measured at equilibrium (see
above), rather than by direct rate measurements, as in the
current work. Despite these differences, our current results
agree with the conclusion of Hirokawa et al. that mRNA
and tRNA are released from the PoTC prior to 70S split-
ting, while disagreeing with their conclusion that tRNA is
released before mRNA. Here it may be relevant that the Hi-
rokawa et al. model PoTC differs from ours in containing
two bound tRNAs/ribosome rather than one (41), and in
lacking a ribosome-bound stop codon. It is also possible
that crosstalk among ribosomes bound to the same strand
of mRNA within a polysome, possibly involving the forma-
tion or melting of mRNA secondary structures, could im-
pede the rate of mRNA dissociation relative to dissociation
from a single ribosome, or that different mRNA sequences
could modulate the rates of mRNA and tRNA release to
different extents.

Although our results are clear for the model PoTCs ex-
amined in this paper, we are mindful that they may not
fully reflect the mechanism of PoTC breakdown in vivo. For
example, as mentioned above, ribosome recycling from a
polysome might proceed differently than from a monosome.
It has also been suggested that incompletely folded full-
length nascent protein newly released from a tRNA-bound
ribosome might directly impact recycling (60). Clearly, fur-
ther experiments will be required to resolve these points.

SUMMARY

We have shown, using direct, time-resolved, assays, that (i)
for the common case model PoTCs employed in this work,
the kinetic mechanism of PoTC breakdown proceeds in the
order: mRNA release followed by tRNA release and then by
70S splitting; (ii) when there is a SD sequence upstream of
the termination codon this mechanism is changed such that
all three processes proceed with identical apparent rates,
likely as a result of 70S splitting becoming rate determin-
ing; (iii) these two mechanisms are consistent with the ef-
fects of upstream SD-like sequences on ribosome profiling;
(iv) differences between our proposed kinetic mechanism
and those of earlier workers that were also based on rate
measurements can be attributed both to an underestima-
tion of the effects of an upstream SD sequence on PoTC
breakdown as well as to the use of less straightforward mea-
sures of mRNA release and 70S splitting and (v) polysome
structure and mRNA sequence could affect the relative or-
der of mRNA and tRNA release. Our results support the
view that, in general, the principal biological role of RRF
and EF-G·GTP in catalyzing recycling is to effect the re-
lease of mRNA and tRNA from the PoTC, with the split-
ting of the 70S ribosome into 30S and 50S subunits being
somewhat dispensable.
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