47,282 research outputs found

    Exact and approximate dynamics of the quantum mechanical O(N) model

    Full text link
    We study a quantum dynamical system of N, O(N) symmetric, nonlinear oscillators as a toy model to investigate the systematics of a 1/N expansion. The closed time path (CTP) formalism melded with an expansion in 1/N is used to derive time evolution equations valid to order 1/N (next-to-leading order). The effective potential is also obtained to this order and its properties areelucidated. In order to compare theoretical predictions against numerical solutions of the time-dependent Schrodinger equation, we consider two initial conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of validity of the large-N expansion. We discuss unitarity violation in the 1/N expansion; a well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are also compared to those given by the Hartree variational ansatz at given values of N. We conclude that late-time behavior, where nonlinear effects are significant, is not well-described by either approximation.Comment: 16 pages, 12 figrures, revte

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter ⟚σ⟩\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Retrospective studies of operating problems in air transport

    Get PDF
    An epidemiological model for the study of human errors in aviation is presented. In this approach, retrospective data are used as the basis for formulation of hypotheses as to system factors which may have contributed to such errors. Prospective experimental studies of aviation operations are also required in order to prove or disprove the hypotheses, and to evaluate the effectiveness of intervention techniques designed to solve operational problems in the aviation system

    Chaos in effective classical and quantum dynamics

    Full text link
    We investigate the dynamics of classical and quantum N-component phi^4 oscillators in the presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.Comment: 6 pages, RevTeX, 5 figures, uses psfig, changed indroduction and conclusions, added reference

    Dynamics of broken symmetry lambda phi^4 field theory

    Full text link
    We study the domain of validity of a Schwinger-Dyson (SD) approach to non-equilibrium dynamics when there is broken symmetry. We perform exact numerical simulations of the one- and two-point functions of lambda phi^4 field theory in 1+1 dimensions in the classical domain for initial conditions where < phi(x) > not equal to 0. We compare these results to two self-consistent truncations of the SD equations which ignore three-point vertex function corrections. The first approximation, which sets the three-point function to one (the bare vertex approximation (BVA)) gives an excellent description for < phi(x) > = phi(t). The second approximation which ignores higher in 1/N corrections to the 2-PI generating functional (2PI -1/N expansion) is not as accurate for phi(t). Both approximations have serious deficiencies in describing the two-point function when phi(0) > .4.Comment: 10 pages, 6 figure

    Inertial sensor-based knee flexion/extension angle estimation

    Get PDF
    A new method for estimating knee joint flexion/extension angles from segment acceleration and angular velocity data is described. The approach uses a combination of Kalman filters and biomechanical constraints based on anatomical knowledge. In contrast to many recently published methods, the proposed approach does not make use of the earth’s magnetic field and hence is insensitive to the complex field distortions commonly found in modern buildings. The method was validated experimentally by calculating knee angle from measurements taken from two IMUs placed on adjacent body segments. In contrast to many previous studies which have validated their approach during relatively slow activities or over short durations, the performance of the algorithm was evaluated during both walking and running over 5 minute periods. Seven healthy subjects were tested at various speeds from 1 to 5 miles/hour. Errors were estimated by comparing the results against data obtained simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint constraint used in the IMU analysis was derived from the Qualysis data. Limitations of the method, its clinical application and its possible extension are discussed

    Occupational exposure to crystalline silica and autoimmune disease.

    Get PDF
    Occupational exposure to silica dust has been examined as a possible risk factor with respect to several systemic autoimmune diseases, including scleroderma, rheumatoid arthritis, systemic lupus erythematosus, and some of the small vessel vasculitidies with renal involvement (e.g., Wegener granulomatosis). Crystalline silica, or quartz, is an abundant mineral found in sand, rock, and soil. High-level exposure to respirable silica dust can cause chronic inflammation and fibrosis in the lung and other organs. Studies of specific occupational groups with high-level silica exposure (e.g., miners) have shown increased rates of autoimmune diseases compared to the expected rates in the general population. However, some clinic- and population-based studies have not demonstrated an association between silica exposure and risk of autoimmune diseases. This lack of effect may be due to the limited statistical power of these studies to examine this association or because the lower- or moderate-level exposures that may be more common in the general population were not considered. Experimental studies demonstrate that silica can act as an adjuvant to nonspecifically enhance the immune response. This is one mechanism by which silica might be involved in the development of autoimmune diseases. Given that several different autoimmune diseases may be associated with silica dust exposure, silica dust may act to promote or accelerate disease development, requiring some other factor to break immune tolerance or initiate autoimmunity. The specific manifestation of this effect may depend on underlying differences in genetic susceptibility or other environmental exposures

    An O(N) symmetric extension of the Sine-Gordon Equation

    Full text link
    We discuss an O(N) exension of the Sine-Gordon (S-G)equation which allows us to perform an expansion around the leading order in large-N result using Path-Integral methods. In leading order we show our methods agree with the results of a variational calculation at large-N. We discuss the striking differences for a non-polynomial interaction between the form for the effective potential in the Gaussian approximation that one obtains at large-N when compared to the N=1 case. This is in contrast to the case when the classical potential is a polynomial in the field and no such drastic differences occur. We find for our large-N extension of the Sine-Gordon model that the unbroken ground state is unstable as one increases the coupling constant (as it is for the original S-G equation) and we determine the stability criteria.Comment: 21 pages, Latex (Revtex4) v3:minor grammatical changes and addition
    • 

    corecore