35 research outputs found

    Hamilton Cycles in a Class of Random Directed Graphs

    Get PDF
    AbstractWe prove that almost every 3-in, 3-out digraph is Hamiltonian

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    Discordant voting processes on finite graphs

    Get PDF
    We consider an asynchronous voting process on graphs which we call discordant voting, and which can be described as follows. Initially each vertex holds one of two opinions, red or blue say. Neighbouring vertices with different opinions interact pairwise. After an interaction both vertices have the same colour. The quantity of interest is T, the time to reach consensus, i.e. the number of interactions needed for all vertices have the same colour. An edge whose endpoint colours differ (i.e. one vertex is coloured red and the other one blue) is said to be discordant. A vertex is discordant if its is incident with a discordant edge. In discordant voting, all interactions are based on discordant edges. Because the voting process is asynchronous there are several ways to update the colours of the interacting vertices. Push: Pick a random discordant vertex and push its colour to a random discordant neighbour. Pull: Pick a random discordant vertex and pull the colour of a random discordant neighbour. Oblivious: Pick a random endpoint of a random discordant edge and push the colour to the other end point. We show that ET, the expected time to reach consensus, depends strongly on the underlying graph and the update rule. For connected graphs on n vertices, and an initial half red, half blue colouring the following hold. For oblivious voting, ET = n2/4 independent of the underlying graph. For the complete graph Kn, the push protocol has ET = =(n log n), whereas the pull protocol has ET = =(2n). For the cycle Cn all three protocols have ET = =(n2). For the star graph however, the pull protocol has ET = O(n2), whereas the push protocol is slower with ET = =(n2 log n). The wide variation in ET for the pull protocol is to be contrasted with the well known model of synchronous pull voting, for which ET = O(n) on many classes of expanders

    The Power of Two Choices in Distributed Voting

    Full text link
    Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Θ(n)\Theta(n) expected steps to complete, even if initially there are only two distinct opinions. In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets AA and BB, respectively. Here, ∣A∣+∣B∣=n|A| + |B| = n is the number of vertices of the graph. We show that there is a constant KK such that if the initial imbalance between the two opinions is ?ν0=(∣A∣−∣B∣)/n≥K(1/d)+(d/n)\nu_0 = (|A| - |B|)/n \geq K \sqrt{(1/d) + (d/n)}, then with high probability two sample voting completes in a random dd regular graph in O(log⁡n)O(\log n) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if ν0≥Kλ2\nu_0 \geq K \lambda_2 where λ2\lambda_2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n)\Omega(n) steps, and the minority can still win with probability ∣B∣/n|B|/n.Comment: 22 page

    Discordant Voting Processes on Finite Graphs

    Get PDF
    We consider an asynchronous voting process on graphs called discordant voting, which can be described as follows. Initially each vertex holds one of two opinions, red or blue. Neighboring vertices with different opinions interact pairwise along an edge. After an interaction both vertices have the same color. The quantity of interest is the time to reach consensus, i.e., the number of steps needed for all vertices have the same color. We show that for a given initial coloring of the vertices, the expected time to reach consensus depends strongly on the underlying graph and the update rule (i.e., push, pull, oblivious)

    First Passage Properties of the Erdos-Renyi Random Graph

    Full text link
    We study the mean time for a random walk to traverse between two arbitrary sites of the Erdos-Renyi random graph. We develop an effective medium approximation that predicts that the mean first-passage time between pairs of nodes, as well as all moments of this first-passage time, are insensitive to the fraction p of occupied links. This prediction qualitatively agrees with numerical simulations away from the percolation threshold. Near the percolation threshold, the statistically meaningful quantity is the mean transit rate, namely, the inverse of the first-passage time. This rate varies non-monotonically with p near the percolation transition. Much of this behavior can be understood by simple heuristic arguments.Comment: 10 pages, 9 figures, 2-column revtex4 forma

    Experimental progress in positronium laser physics

    Get PDF
    corecore