1,278 research outputs found
Volume-Enclosing Surface Extraction
In this paper we present a new method, which allows for the construction of
triangular isosurfaces from three-dimensional data sets, such as 3D image data
and/or numerical simulation data that are based on regularly shaped, cubic
lattices. This novel volume-enclosing surface extraction technique, which has
been named VESTA, can produce up to six different results due to the nature of
the discretized 3D space under consideration. VESTA is neither template-based
nor it is necessarily required to operate on 2x2x2 voxel cell neighborhoods
only. The surface tiles are determined with a very fast and robust construction
technique while potential ambiguities are detected and resolved. Here, we
provide an in-depth comparison between VESTA and various versions of the
well-known and very popular Marching Cubes algorithm for the very first time.
In an application section, we demonstrate the extraction of VESTA isosurfaces
for various data sets ranging from computer tomographic scan data to simulation
data of relativistic hydrodynamic fireball expansions.Comment: 24 pages, 33 figures, 4 tables, final versio
Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies
We present a coherent theoretical study of ultrarelativistic heavy-ion data
obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional
relativistic hydrodynamics. We find excellent agreement with the rapidity
spectra of negative hadrons and protons and with the correlation measurements
in two experiments: at 200 and at 160 (preliminary
results). Within our model this implies that for () a
quark-gluon-plasma of initial volume 174 (24 ) with a lifetime 3.4
(1.5 ) was formed. It is found that the Bose-Einstein correlation
measurements do not determine the maximal effective radii of the hadron sources
because of the large contributions from resonance decay at small momenta. Also
within this study we present an NA49 acceptance corrected two-pion
Bose-Einstein correlation function in the invariant variable, .Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be
requested for submission via e.mail from [email protected]
Charged hydrogenic problem in a magnetic field: Non-commutative translations, unitary transformations, and coherent states
An operator formalism is developed for a description of charged electron-hole
complexes in magnetic fields. A novel unitary transformation of the Hamiltonian
that allows one to partially separate the center-of-mass and internal motions
is proposed. We study the operator algebra that leads to the appearance of new
effective particles, electrons and holes with modified interparticle
interactions, and their coherent states in magnetic fields. The developed
formalism is used for studying a two-dimensional negatively charged
magnetoexciton . It is shown that Fano-resonances are present in the
spectra of internal transitions, indicating the existence of
three-particle quasi-bound states embedded in the continuum of higher Landau
levels.Comment: 9 pages + 2 figures, accepted in PRB, a couple of typos correcte
Interplay between Heavy Fermions and Crystal Field Excitation in Kondo Lattices. Low-Temperature Thermodynamics and Inelastic Neutron Scattering Spectra of CeNiSn
The microscopic theory of interaction between the heavy fermions and the
crystal field excitations in Kondo lattices is presented. It is shown that the
heavy-fermion spectrum scaled by the Kondo temperature can be modified by
the crystal field excitations with the energy provided the
inequality is realized. On the base of general description of
excitation spectrum the detailed qualitative and quantitative explanation of
anisotropic inelastic neutron scattering spectra and low-temperature specific
heat of orthorhombic CeNiSn is given. The theory resolves the apparent
contradiction between the metallic conductivity and the gap-wise behavior of
thermodynamic properties and spin response of CeNiSn at low temperatures.Comment: 24 pages (LaTeX), 12 Postscript figures, submitted to Phys.Rev.
Superconducting fluctuations and the Nernst effect: A diagrammatic approach
We calculate the contribution of superconducting fluctuations above the
critical temperature to the transverse thermoelectric response
, the quantity central to the analysis of the Nernst effect. The
calculation is carried out within the microscopic picture of BCS, and to linear
order in magnetic field. We find that as , the dominant contribution
to arises from the Aslamazov-Larkin diagrams, and is equal to the
result previously obtained from a stochastic time-dependent Ginzburg-Landau
equation [Ussishkin, Sondhi, and Huse, arXiv:cond-mat/0204484]. We present an
argument which establishes this correspondence for the heat current. Other
microscopic contributions, which generalize the Maki-Thompson and density of
states terms for the conductivity, are less divergent as .Comment: 11 pages, 5 figure
Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels
A theory of shake-up processes in photoabsorption of an interacting
low-density two-dimensional electron gas (2DEG) in strong magnetic fields is
presented. In these processes, an incident photon creates an electron-hole pair
and, because of Coulomb interactions, simultaneously excites one particle to
higher Landau levels (LL's). In this work, the spectra of correlated charged
spin-singlet and spin-triplet electron-hole states in the first hole LL and
optical transitions to these states (i.e., shake-ups to the first hole LL) are
studied. Our results indicate, in particular, the presence of optically-active
three-particle quasi-discrete states in the exciton continuum that may give
rise to surprisingly sharp Fano resonances in strong magnetic fields. The
relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole
gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are
discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6).
Accepted in Phys. Rev.
Somatostatin interneurons activated by 5-HT(2A) receptor suppress slow oscillations in medial entorhinal cortex
Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that (±)3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT(2A) receptor (5-HT(2A)R) play an important role in the suppression of SOs. Since 5-HT(2A)R signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics
Somatostatin interneurons activated by 5-HT2A receptor suppress slow oscillations in medial entorhinal cortex
Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that 3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT2A receptor (5-HT2AR) play an important role in the suppression of SOs. Since 5-HT2AR signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics
Supersymmetry breaking in two dimensions: the lattice N=1 Wess-Zumino model
We study dynamical supersymmetry breaking by non perturbative lattice
techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the
Hamiltonian formalism and analyze the phase diagram by analytical
strong-coupling expansions and explicit numerical simulations with Green
Function Monte Carlo methods.Comment: 53 pages, 17 figures, revtex
The role of occupied d states in the relaxation of hot electrons in Au
We present first-principles calculations of electron-electron scattering
rates of low-energy electrons in Au. Our full band-structure calculations
indicate that a major contribution from occupied d states participating in the
screening of electron-electron interactions yields lifetimes of electrons in Au
with energies of above the Fermi level that are larger than
those of electrons in a free-electron gas by a factor of . This
prediction is in agreement with a recent experimental study of ultrafast
electron dynamics in Au(111) films (J. Cao {\it et al}, Phys. Rev. B {\bf 58},
10948 (1998)), where electron transport has been shown to play a minor role in
the measured lifetimes of hot electrons in this material.Comment: 4 pages, 2 figures, to appear in Phys. Rev.
- …