1,400 research outputs found
Energy-Momentum Tensor of Particles Created in an Expanding Universe
We present a general formulation of the time-dependent initial value problem
for a quantum scalar field of arbitrary mass and curvature coupling in a FRW
cosmological model. We introduce an adiabatic number basis which has the virtue
that the divergent parts of the quantum expectation value of the
energy-momentum tensor are isolated in the vacuum piece of , and
may be removed using adiabatic subtraction. The resulting renormalized
is conserved, independent of the cutoff, and has a physically transparent,
quasiclassical form in terms of the average number of created adiabatic
`particles'. By analyzing the evolution of the adiabatic particle number in de
Sitter spacetime we exhibit the time structure of the particle creation
process, which can be understood in terms of the time at which different
momentum scales enter the horizon. A numerical scheme to compute as a
function of time with arbitrary adiabatic initial states (not necessarily de
Sitter invariant) is described. For minimally coupled, massless fields, at late
times the renormalized goes asymptotically to the de Sitter invariant
state previously found by Allen and Folacci, and not to the zero mass limit of
the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ
from zero, but satisfy m^2+xi R=0, the energy density and pressure of the
scalar field grow linearly in cosmic time demonstrating that, at least in this
case, backreaction effects become significant and cannot be neglected in de
Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure
Systemic Modelling of Design Error Causation in Social Infrastructure Projects
Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation they still remain prevalent in projects. This paper develops a conceptual model of the underlying conditions that contribute to design errors in social infrastructure projects. A systemic model of design error causation is then propagated. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated
A note on the Painleve analysis of a (2+1) dimensional Camassa-Holm equation
We investigate the Painleve analysis for a (2+1) dimensional Camassa-Holm
equation. Our results show that it admits only weak Painleve expansions. This
then confirms the limitations of the Painleve test as a test for complete
integrability when applied to non-semilinear partial differential equations.Comment: Chaos, Solitons and Fractals (Accepted for publication
TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis
Background
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neurone (MN) degeneration and death. ALS can be sporadic (sALS) or familial, with a number of associated gene mutations, including C9orf72 (C9ALS). DNA methylation is an epigenetic mechanism whereby a methyl group is attached to a cytosine (5mC), resulting in gene expression repression. 5mC can be further oxidized to 5‐hydroxymethylcytosine (5hmC). DNA methylation has been studied in other neurodegenerative diseases, but little work has been conducted in ALS.
Aims
To assess differences in DNA methylation in individuals with ALS and the relationship between DNA methylation and TDP43 pathology.
Methods
Post mortem tissue from controls, sALS cases and C9ALS cases were assessed by immunohistochemistry for 5mC and 5hmC in spinal cord, motor cortex and prefrontal cortex. LMNs were extracted from a subset of cases using laser capture microdissection. DNA from these underwent analysis using the MethylationEPIC array to determine which molecular processes were most affected.
Results
There were higher levels of 5mC and 5hmC in sALS and C9ALS in the residual lower motor neurones (LMNs) of the spinal cord. Importantly, in LMNs with TDP43 pathology there was less nuclear 5mC and 5hmC compared to the majority of residual LMNs that lacked TDP43 pathology. Enrichment analysis of the array data suggested RNA metabolism was particularly affected.
Conclusions
DNA methylation is a contributory factor in ALS LMN pathology. This is not so for glia or neocortical neurones
Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect
We present a stochastic theory for the nonequilibrium dynamics of charges
moving in a quantum scalar field based on the worldline influence functional
and the close-time-path (CTP or in-in) coarse-grained effective action method.
We summarize (1) the steps leading to a derivation of a modified
Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical
theory free of runaway solutions and without pre-acceleration patholigies, and
(2) the transformation to a stochastic effective action which generates
Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a
particle's worldline around its semiclassical trajectory. We point out the
misconceptions in trying to directly relate radiation reaction to vacuum
fluctuations, and discuss how, in the framework that we have developed, an
array of phenomena, from classical radiation and radiation reaction to the
Unruh effect, are interrelated to each other as manifestations at the
classical, stochastic and quantum levels. Using this method we give a
derivation of the Unruh effect for the spacetime worldline coordinates of an
accelerating charge. Our stochastic particle-field model, which was inspired by
earlier work in cosmological backreaction, can be used as an analog to the
black hole backreaction problem describing the stochastic dynamics of a black
hole event horizon.Comment: Invited talk given by BLH at the International Assembly on
Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1
figur
Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland
A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems
Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space
A quantitative test for the validity of the semi-classical approximation in
gravity is given. The criterion proposed is that solutions to the
semi-classical Einstein equations should be stable to linearized perturbations,
in the sense that no gauge invariant perturbation should become unbounded in
time. A self-consistent linear response analysis of these perturbations, based
upon an invariant effective action principle, necessarily involves metric
fluctuations about the mean semi-classical geometry, and brings in the
two-point correlation function of the quantum energy-momentum tensor in a
natural way. This linear response equation contains no state dependent
divergences and requires no new renormalization counterterms beyond those
required in the leading order semi-classical approximation. The general linear
response criterion is applied to the specific example of a scalar field with
arbitrary mass and curvature coupling in the vacuum state of Minkowski
spacetime. The spectral representation of the vacuum polarization function is
computed in n dimensional Minkowski spacetime, and used to show that the flat
space solution to the semi-classical Einstein equations for n=4 is stable to
all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083,
with two additional sections and two new appendices giving a complete,
explicit example of the semi-classical stability criterion proposed in the
previous pape
Whole genome sequencing in an acrodermatitis enteropathica family from the Middle East.
We report a family from Tabuk, Saudi Arabia, previously screened for Acrodermatitis Enteropathica (AE), in which two siblings presented with typical features of acral dermatitis and a pustular eruption but differing severity. Affected members of our family carry a rare genetic variant, p.Gly512Trp in the SLC39A4 gene which encodes a zinc transporter; disease is thought to result from zinc deficiency. Similar mutations have been reported previously; however, the variable severity within cases carrying the p.Gly512Trp variant and in AE overall led us to hypothesise that additional genetic modifiers may be contributing to the disease phenotype. Therefore whole genome sequencing was carried out in five family members, for whom material was available to search for additional modifiers of AE; this included one individual with clinically diagnosed AE. We confirmed that the p.Gly512Trp change in SLC39A4 was the only candidate homozygous change which was sufficiently rare (ExAC allele frequency 1.178e-05) and predicted deleterious (CADD score 35) to be attributable as a fully penetrant cause of AE. To identify other genes which may carry relevant genetic variation, we reviewed the relevant literature and databases including Gene Ontology Consortium, GeneMANIA, GeneCards, and MalaCards to identify zinc transporter genes and possible interacting partners. The affected individual carried variants in RECQL4 and GPAA1 genes with ExAC allele frequency 10. p.Gly512Trp is highly likely to be the pathogenic variant in this family. This variant was previously detected in a Tunisian proband with perfect genotype-phenotype segregation suggestive of pathogenicity. Further research is required in this area due to small sample size, but attention should be given to RECQL4 and GPAA1 to understand their role in the skin disease
The position of graptolites within Lower Palaeozoic planktic ecosystems.
An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms
Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry
The energy spectra and the corresponding two- component spinor wavefunctions
of the Dirac equation for the Rosen-Morse potential with spin and pseudospin
symmetry are obtained. The wave ( state) solutions for this
problem are obtained by using the basic concept of the supersymmetric quantum
mechanics approach and function analysis (standard approach) in the
calculations. Under the spin symmetry and pseudospin symmetry, the energy
equation and the corresponding two-component spinor wavefunctions for this
potential and other special types of this potential are obtained. Extension of
this result to state is suggested.Comment: 18 page
- …