1,139 research outputs found

    q-Boson approach to multiparticle correlations

    Full text link
    An approach is proposed enabling to effectively describe, for relativistic heavy-ion collisions, the observed deviation from unity of the intercept \lambda (measured value corresponding to zero relative momentum {\bf p} of two registered identical pions or kaons) of the two-particle correlation function C(p,K). The approach uses q-deformed oscillators and the related picture of ideal gas of q-bosons. In effect, the intercept \lambda is connected with deformation parameter q. For a fixed value of q, the model predicts specific dependence of \lambda on pair mean momentum {\bf K} so that, when |{\bf K}|\gsim 500 - 600 MeV/c for pions or when |{\bf K}|\gsim 700 - 800 MeV/c for kaons, the intercept \lambda tends to a constant which is less than unity and determined by q. If q is fixed to be the same for pions and kaons, the intercepts \lambda_\pi and \lambda_K essentially differ at small mean momenta {\bf K}, but tend to be equal at {\bf K} large enough (|{\bf K}|\gsim 800MeV/c) where the effect of resonance decays can be neglected. We argue that it is of basic interest to check in the experiments on heavy ion collisions: (i) the exact shape of dependence \lambda = \lambda({\bf K}), and (ii) whether for |{\bf K}| \gsim 800 MeV/c the resulting \lambda_\pi and \lambda_K indeed coincide.Comment: 6 pages, revtex, 4 figures, to be published in Mod. Phys. Lett.

    Local three-nucleon interaction from chiral effective field theory

    Get PDF
    The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-to-next-to-leading order (N2LO) is regulated with a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is then local in the coordinate space, which is advantages for some many-body techniques. Matrix elements of the local chiral NNN interaction are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN matrix elements are employed in 3H and 4He bound-state calculations.Comment: 17 pages, 9 figure

    Does The 3N-Force Have A Hard Core?

    Full text link
    The meson-nucleon dynamics that generates the hard core of the RuhrPot two-nucleon interaction is shown to vanish in the irreducible 3N force. This result indicates a small 3N force dominated by conventional light meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian. The resulting RuhrPot 3N force is defined in the appendix. A completely different result is expected when the Tamm-Dancoff/Bloch-Horowitz procedure is used to define the NN and 3N potentials. In that approach, (e.g. full Bonn potential) both the NN {\it and} 3N potentials contain non-vanishing contributions from the coherent sum of meson-recoil dynamics and the possibility of a large hard core requiring explicit calculation cannot be ruled out.Comment: 16 pages REVTeX + 3 ps fig

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    Electromagnetic response functions of few-nucleon systems

    Get PDF
    Inclusive electromagnetic reactions in few-nucleon systems are studied basing on accurate three- and four-body calculations. The longitudinal 4He(e,e') response function obtained at q\le 600 MeV/c completely agrees with experiment. The exact 4He spectral function obtained in a semirealistic potential model is presented, and the accuracy of the quasielastic response calculated with its help is assessed, as well as the accuracy of some simpler approximations for the response. The photodisintegration cross section of 3He obtained with the realistic AV14 NN force plus UrbanaVIII NNN force agrees with experiment. It is shown that this cross section is very sensitive to underlying nuclear dynamics in the E_\gamma\simeq 70-100 MeV region. In particular, the NNN nuclear force clearly manifests itself in this region.Comment: 10 pages, Latex, style file is included, 7 ps figures, to appear in Proc. of the 2nd Int. Conf. on Perspectives in Hadronic Physics, ITCP, Triest, May 1999, World Sci., Singapor

    The Lorentz Integral Transform (LIT) method and its applications to perturbation induced reactions

    Full text link
    The LIT method has allowed ab initio calculations of electroweak cross sections in light nuclear systems. This review presents a description of the method from both a general and a more technical point of view, as well as a summary of the results obtained by its application. The remarkable features of the LIT approach, which make it particularly efficient in dealing with a general reaction involving continuum states, are underlined. Emphasis is given on the results obtained for electroweak cross sections of few--nucleon systems. Their implications for the present understanding of microscopic nuclear dynamics are discussed.Comment: 83 pages, 31 figures. Topical review. Corrected typo

    On contribution of three-body forces to NdNd interaction at intermediate energies

    Get PDF
    Available data on large-angle nucleon-deuteron elastic scattering NddNNd\to dN below the pion threshold give a signal for three-body forces. There is a problem of separation of possible subtle aspects of these forces from off-shell effects in two-nucleon potentials. By considering the main mechanisms of the process, we show qualitatively that in the quasi-binary reaction N+d(NN)+NN+d\to (NN)+N with the final spin singlet NN-pair in the S-state the relative contribution of the 3N forces differs substantially from the elastic channel. It gives a new testing ground for the problem in question.Comment: 9 pages, Latex, 3 Postscript figure

    Charge-Asymmetry of the Nucleon-Nucleon Interaction

    Get PDF
    Based upon the Bonn meson-exchange model for the nucleon-nucleon (NNNN) interaction, we study systematically the charge-symmetry-breaking (CSB) of the NNNN interaction due to nucleon mass splitting. Particular attention is payed to CSB generated by the 2π2\pi-exchange contribution to the NNNN interaction, πρ\pi\rho diagrams, and other multi-meson-exchanges. We calculate the CSB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences in SS, PP and higher partial waves up to 300 MeV lab. energy. We find a total CSB difference in the singlet scattering length of 1.6 fm which explains the empirical value accurately. The corresponding CSB phase-shift differences are appreciable at low energy in the 1S0^1S_0 state. In the other partial waves, the CSB splitting of the phase shifts is small and increases with energy, with typical values in the order of 0.1 deg at 300 MeV in PP and DD waves.Comment: 11 pages, RevTex, 14 figure

    Identification and appraisal of methods and approaches used in the development and production of Evidence and Gap Maps (EGM). Protocol of an Evidence and Gap Map (EGM)

    Get PDF
    This is the final versionNational Institute for Health and Care Research (NIHR

    Temperature and Density Effects on the Nucleon Mass Splitting

    Get PDF
    The finite temperature and finite density dependence of the neutron-proton mass difference is analysed in a purely hadronic framework where the ρω\rho-\omega mixing is crucial for this isospin symmetry breakdown. The problem is handled within Thermo Field Dynamics. The present results, consistent with partial chiral and charge symmetry restoration, improve the experimental data fit for the energy difference between mirror nuclei.Comment: 17 pages, revtex fil
    corecore