3,828 research outputs found

    A Ground-based Search for Lunar Resources Using High-resolution Imaging in the Infrared

    Get PDF
    When humans return to the Moon, lunar resources will play an important role in the successful deployment and maintenance of the lunar base. Previous studies have illustrated the abundance of resource materials available on the surface of the Moon, as well as their ready accessibility. Particularly worth considering are the lunar regional (2,000-30,000 sq km) pyroclastic deposits scattered about the lunar nearside. These 30-50-m-thick deposits are composed of fine-grained unconsolidated titanium- and iron-rich mafic glasses and may be used as bulk feedstock for the beneficiation of oxygen, iron, titanium, sulfur, and other solar wind gases, or simply used as is for construction and shielding purposes. A groundbased observing survey of the resource-rich regions on the lunar nearside using a new imaging technique designed to obtain much higher resolution images, and more precise compositional analyses than previously obtainable is proposed

    Stiffness and energy losses in cylindrically symmetric superconductor levitating systems

    Full text link
    Stiffness and hysteretic energy losses are calculated for a magnetically levitating system composed of a type-II superconductor and a permanent magnet when a small vibration is produced in the system. We consider a cylindrically symmetric configuration with only vertical movements and calculate the current profiles under the assumption of the critical state model. The calculations, based on magnetic energy minimization, take into account the demagnetization fields inside the superconductor and the actual shape of the applied field. The dependence of stiffness and hysteretic energy losses upon the different important parameters of the system such as the superconductor aspect ratio, the relative size of the superconductor-permanent magnet, and the critical current of the superconductor are all systematically studied. Finally, in view of the results, we provide some trends on how a system such as the one studied here could be designed in order to optimize both the stiffness and the hysteretic losses.Comment: 8 pages; 8 figure

    The Affective Impact of Financial Skewness on Neural Activity and Choice

    Get PDF
    Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice

    On a connection between factor analysis and multidimensional unfolding

    Full text link
    Given the preference ordering of each of a number of individuals over a set of stimuli, it is proposed that if the preference orderings are generated in a Euclidean space of r dimensions which can be recovered by unfolding the preference orderings, then a factor analysis of the correlations between individual's preference orderings will yield a space of r + 1 dimensions with the original r -space embedded in it, and the additional dimension will be one of social utility. The proposition is clearly shown to be satisfied by means of the Monte Carlo technique for both random and lattice stimuli in three dimensions and for two other examples with random stimuli in one and two dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45708/1/11336_2005_Article_BF02289726.pd

    Flexible growing rods: a pilot study to determine if polymer rod constructs may provide stability to skeletally immature spines

    Get PDF
    Abstract Background Surgical treatments for early onset scoliosis (EOS), including growing rod constructs, involve many complications. Some are due to biomechanical factors. A construct that is more flexible than current instrumentation systems may reduce complications. The purpose of this preliminary study was to determine spine range of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polyetheretherketone (PEEK) rods would be greater than metal rods and lower than noninstrumented controls. Further, adjacent segment motion was expected to be lower with polymer rods compared to conventional systems. Methods Biomechanical tests were conducted on 6 skeletally immature porcine thoracic spines (domestic swine, 35-40 kg). Spines were harvested after death from swine that had been utilized for other studies (IACUC approved) which had not involved the spine. Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of PEEK (6.25 mm), titanium (4 mm), and CoCr (5 mm) alloy. Lateral bending (LB) and flexion-extension (FE) moments of ±5 Nm were applied. Vertebral rotations were measured using video. Differences were determined by two-tailed t-tests and Bonferroni correction with four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α=0.05/4). Results In LB, ROM of specimens with PEEK rods was lower than control at each instrumented level. ROM was greater for PEEK rods than both Ti and CoCr at every instrumented level. Mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for Ti and CoCr. In FE, mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for metal. Combining treated levels, in LB, ROM for PEEK rods was 35% of control (p<0.0001) and 270% of CoCr rods (p<0.01). In FE, ROM with PEEK was 27% of control (p<0.001) and 180% of CoCr (p<0.01). Conclusions PEEK rods decreased flexibility versus noninstumented controls, and increased flexibility versus metal rods. Smaller increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.http://deepblue.lib.umich.edu/bitstream/2027.42/134537/1/13013_2015_Article_967.pd

    Scanning Tunneling Spectroscopy in MgB2

    Full text link
    We present scanning tunneling microscopy measurements of the surface of superconducting MgB2 with a critical temperature of 39K. In zero magnetic field the conductance spectra can be analyzed in terms of the standard BCS theory with a smearing parameter Gamma. The value of the superconducting gap is 5.2 meV at 4.2 K, with no experimentally significant variation across the surface of the sample. The temperature dependence of the gap follows the BCS form, fully consistent with phonon-mediated superconductivity in this novel superconductor. The application of a magnetic field induces strong pair-breaking as seen in the conductance spectra in fields up to 6 T.Comment: 4 pages, 4 figure

    Defining the gap between research and practice in public relations programme evaluation - towards a new research agenda

    Get PDF
    The current situation in public relations programme evaluation is neatly summarized by McCoy who commented that 'probably the most common buzzwords in public relations in the last ten years have been evaluation and accountability' (McCoy 2005, 3). This paper examines the academic and practitioner-based literature and research on programme evaluation and it detects different priorities and approaches that may partly explain why the debate on acceptable and agreed evaluation methods continues. It analyses those differences and proposes a research agenda to bridge the gap and move the debate forward

    Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields

    Full text link
    Crossed magnetic field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both (crossed) magnetic field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O (YBCO) single domains that had been pre-magnetized with the applied field parallel to their shortest direction (i.e. the c-axis) and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pick-up coils, a Hall probe placed against the sample surface and Magneto-Optical Imaging (MOI). We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross-section. It is also shown that the model does not predict any saturation of the magnetic induction, even after a large number (~ 100) of transverse field cycles. These features are shown to be consistent with the experimental data.Comment: 41 pages, 9 figures, accepted in Phys. Rev. B Changes : 8 references added, a few precisions added, some typos correcte

    Bulk high-Tc superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux ?

    Full text link
    Drilling holes in a bulk high-Tc superconductor enhances the oxygen annealing and the heat exchange with the cooling liquid. However, drilling holes also reduces the amount of magnetic flux that can be trapped in the sample. In this paper, we use the Bean model to study the magnetization and the current line distribution in drilled samples, as a function of the hole positions. A single hole perturbs the critical current flow over an extended region that is bounded by a discontinuity line, where the direction of the current density changes abruptly. We demonstrate that the trapped magnetic flux is maximized if the center of each hole is positioned on one of the discontinuity lines produced by the neighbouring holes. For a cylindrical sample, we construct a polar triangular hole pattern that exploits this principle; in such a lattice, the trapped field is ~20% higher than in a squared lattice, for which the holes do not lie on discontinuity lines. This result indicates that one can simultaneously enhance the oxygen annealing, the heat transfer, and maximize the trapped field

    Genomic and metabolomic polymorphism among experimentally selected paromomycin-resistant Leishmania donovani strains

    Get PDF
    Understanding the mechanism(s) underpinning drug resistance could lead to novel treatments to reverse the increased tolerance of a pathogen. In this study paromomycin (PMM) resistance (PMM-R) was induced in three Nepalese clinical strains of L. donovani, with different inherent susceptibility to antimony drugs (Sb), by step-wise exposure of promastigotes to PMM. Exposure to PMM resulted in the production of mixed populations of parasites even though a single cloned population was used at the start of selection. PMM IC50 values for PMM-R parasites varied between 104-481 µM at the promastigotes stage and 32-195 µM at the intracellular amastigotes stage. PMM resistance was associated with increased resistance to nitric oxide at the amastigote but not the promastigote stage (p < 0.05). This effect was most marked in the Sb-R PMM-R clone, where PMM-R resistance was associated with a significant upregulation in glutathione compared to its WT (p < 0.05) although there was no change in trypanothione (detected in its oxidised form). Interestingly, PMM-R strains showed an increase in either the keto acid derivative of isoleucine (Sb-I PMM-R) or the 2-hydroxy acids derived from arginine and tyrosine (Sb-S PMM-R and Sb-R PMM-R). These results are consistent with the recent finding that upregulation of the branch-chain amino acid aminotransferase and the D-lactate dehydrogenase are linked to PMM-R. In addition, we found that PMM-R was associated with a significant increase in aneuploidy during PMM selection in all the strains, which could allow rapid selection of genetic changes that confer a survival advantage
    corecore