3,735 research outputs found
Stiffness and energy losses in cylindrically symmetric superconductor levitating systems
Stiffness and hysteretic energy losses are calculated for a magnetically
levitating system composed of a type-II superconductor and a permanent magnet
when a small vibration is produced in the system. We consider a cylindrically
symmetric configuration with only vertical movements and calculate the current
profiles under the assumption of the critical state model. The calculations,
based on magnetic energy minimization, take into account the demagnetization
fields inside the superconductor and the actual shape of the applied field. The
dependence of stiffness and hysteretic energy losses upon the different
important parameters of the system such as the superconductor aspect ratio, the
relative size of the superconductor-permanent magnet, and the critical current
of the superconductor are all systematically studied. Finally, in view of the
results, we provide some trends on how a system such as the one studied here
could be designed in order to optimize both the stiffness and the hysteretic
losses.Comment: 8 pages; 8 figure
Preliminary results of spectral reflectance studies of tycho crater
The preliminary analysis and interpretation of near infrared spectra obtained for both the interior and exterior deposits associated with the Tycho crater is presented. Specific objectives were: (1) to determine the composition and stratigraphy of the highland crust in the Tycho target site; (2) to determine the likely composition of the primary ejecta which may be present in ray deposits; (3) to investigate the nature of spectral units defined in previous studies; (4) to further investigate the nature and origin of both the bright and dark haloes around the rim crest; and (5) to compare the compositions determined for the Tycho units with those of the Aristarchus crater as well as typical highland deposits. The spectra obtained for the interior areas exhibit similar spectral features. These include relatively strong 1 micron absorption bands whose minima are centered between 0.97 and 0.99 microns and shallow to intermediate continuum slopes. The spectra generally exhibit indications of a 1.3 micron feature consistent with the presence of Fe(2+) bearing plagioclase feldspar. The strong 1 micron absorption features indicate a dominant high Ca clinopyroxene component. Results obtained from the ejecta deposits show that the spectrum of the inner, bright halo is almost identical with those obtained for interior units. The spectrum of the dark halo exhibits a wide, relatively shallow absorption feature centered at 1.01 microns, a 1.3 micron absorption, and a steep continuum slope. This spectrum is interpreted as indicating the presence of pyroxene, Fe-bearing feldspar, and a significant component of Fe-bearing impact melt glass. Finally, the spectra of spots inside Tycho show similarity with certain spectra for Aristarchus. However, the suite of spectra obtained for Tycho exhibits a different trend in terms of band center versus width
Flexible growing rods: a biomechanical pilot study of polymer rod constructs in the stability of skeletally immature spines
Abstract
Background
Surgical treatments for early onset scoliosis (EOS) correct curvatures and improve respiratory function but involve many complications. A distractible, or ‘growing rod,’ implant construct that is more flexible than current metal rod systems may sufficiently correct curves in small children and reduce complications due to biomechanical factors. The purpose of this pilot study was to determine ranges of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polymer rods would be greater than conventional metal rods and lower than non-instrumented controls.
Methods
Biomechanical tests were conducted on six thoracic spines from skeletally immature domestic swines (35–40 kg). Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of polyetheretherketone (PEEK) (diameter 6.25 mm), titanium (4 mm), and cobalt-chrome alloy (CoCr) (5 mm). Lateral bending (LB) and flexion-extension (FE) moments were applied, and vertebral rotations were measured. Differences were determined by two-tailed t-tests and Bonferroni for four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α = 0.05/4).
Results
In LB, ROM of spine segments after instrumenting with PEEK rods was lower than the non-instrumented control condition at each instrumented level. ROM was greater with PEEK rods than with Ti and CoCr rods at every instrumented level. Combining treated levels, in LB, ROM for PEEK rods was 35 % of control (p < 0.0001) and 270 % of CoCr rods (p < 0.01). In FE, ROM with PEEK was 27 % of control (p < 0.001) and 180 % of CoCr (p < 0.01). At proximal and distal adjacent non-instrumented levels in FE, mean ROM was lower for PEEK than for either metal.
Conclusions
PEEK rods increased flexibility versus metal rods, and decreased flexibility versus non-instrumented controls, both over the entire instrumented segment and at each individual level. Smaller mean increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease complications, such as junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.http://deepblue.lib.umich.edu/bitstream/2027.42/134642/1/13013_2016_Article_87.pd
Remote sensing and geologic studies of the terrain northwest of Humorum basin
A portion of the highlands terrain northwest of the Humorum basin, a large multiringed impact structure on the southwestern portion of the lunar nearside, exhibits anomalous characteristics in several remote sensing data sets. A variety of remote sensing studies of the terrain northwest of Humorum basin were performed in order to determine the composition and origin of the anomalous unit as well as the composition of the highland material exposed by the Humorum impact event. It was found that at least a portion of the mare-bounding ring of Humorum is composed of pure anorthosite. Other details of the study are reported
Flexible growing rods: polymer rods provide stability to -skeletally immature spines
Introduction: Surgical treatments for early onset scoliosis typically require multiple operations and many complications. A more flexible growing rod construct might result in a more flexible spine with fewer complications. Polymer rods (polyetheretherketone, PEEK) are relatively flexible in bending, and therefore might allow for greater range of motion (ROM) during treatment. The purpose of this study was to determine changes in spine ROM after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. Methods: Biomechanical tests were conducted on six skeletally immature porcine thoracic spines (domestic pigs, age 2–4 months, 35–40 kg, T1–T13). Paired pedicle screws were inserted into T3 and T4 proximally, and T10 and T11 distally. Specimens were tested under the following conditions: (i) control, then dual rods of (ii) PEEK (6.25 mm, n = 6), (3) titanium (4 mm, n = 6), and (4) CoCr alloy (5 mm, n = 4). Lateral bending (LB) and flexion--extension (FE) moments of ±5 Nm were applied. Vertebral rotations were measured using video analysis. ROM for the treated region was determined by averaging all maximum side-to-side rotations at each instrumented level. Differences were determined by t-tests and Bonferroni posthoc. Results: In LB, ROM of specimens with PEEK rods was lower than control at each instrumented level. ROM was greater for PEEK rods than both Ti and CoCr at every instrumented level. Mean ROM at proximal and distal uninstrumented levels was lower for PEEK than for Ti and CoCr. In FE, mean ROM at proximal and distal uninstrumented levels was lower for PEEK than for Ti and CoCr. Combining treated levels, in LB ROM for PEEK rods was 35% of control (p \u3c 0.0001) and 270% of CoCr rods (p \u3c 0.05). In FE, ROM for PEEK rods was 27% of control (p \u3c 0.005) and 180% of CoCr rods (p \u3c 0.05). Conclusions: PEEK rods provided increased flexibility versus metal rods, but also significantly greater stiffness than controls. Smaller increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared with the metal rods, which may decrease probability of junctional kyphosis. This biomechanical feasibility study of flexible polymer rod constructs showed that PEEK rods provided increased flexibility compared with CoCr and Ti rods, but also significantly greater stiffness than uninstrumented controls. Acknowledgments: Surgical technical assistanceby Max F. DeCarvalo MD; student support by Charlotte Schmidlapp Women’s Scholar Program and UC/CCHMC SURF Program
Flexible growing rods: a pilot study to determine if polymer rod constructs may provide stability to skeletally immature spines
Abstract
Background
Surgical treatments for early onset scoliosis (EOS), including growing rod constructs, involve many complications. Some are due to biomechanical factors. A construct that is more flexible than current instrumentation systems may reduce complications. The purpose of this preliminary study was to determine spine range of motion (ROM) after implantation of simulated growing rod constructs with a range of clinically relevant structural properties. The hypothesis was that ROM of spines instrumented with polyetheretherketone (PEEK) rods would be greater than metal rods and lower than noninstrumented controls. Further, adjacent segment motion was expected to be lower with polymer rods compared to conventional systems.
Methods
Biomechanical tests were conducted on 6 skeletally immature porcine thoracic spines (domestic swine, 35-40 kg). Spines were harvested after death from swine that had been utilized for other studies (IACUC approved) which had not involved the spine. Paired pedicle screws were used as anchors at proximal and distal levels. Specimens were tested under the following conditions: control, then dual rods of PEEK (6.25 mm), titanium (4 mm), and CoCr (5 mm) alloy. Lateral bending (LB) and flexion-extension (FE) moments of ±5 Nm were applied. Vertebral rotations were measured using video. Differences were determined by two-tailed t-tests and Bonferroni correction with four primary comparisons: PEEK vs control and PEEK vs CoCr, in LB and FE (α=0.05/4).
Results
In LB, ROM of specimens with PEEK rods was lower than control at each instrumented level. ROM was greater for PEEK rods than both Ti and CoCr at every instrumented level. Mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for Ti and CoCr. In FE, mean ROM at proximal and distal noninstrumented levels was lower for PEEK than for metal. Combining treated levels, in LB, ROM for PEEK rods was 35% of control (p<0.0001) and 270% of CoCr rods (p<0.01). In FE, ROM with PEEK was 27% of control (p<0.001) and 180% of CoCr (p<0.01).
Conclusions
PEEK rods decreased flexibility versus noninstumented controls, and increased flexibility versus metal rods. Smaller increases in ROM at proximal and distal adjacent motion segments occurred with PEEK compared to metal rods, which may help decrease junctional kyphosis. Flexible growing rods may eventually help improve treatment options for young patients with severe deformity.http://deepblue.lib.umich.edu/bitstream/2027.42/134537/1/13013_2015_Article_967.pd
Design criteria for field drainage ditches
File: Agri. Engr. 4 7/76/3.5M"Field drainage ditches are installed to drain surface basins or depressional areas and collect or intercept excess runoff for removal to an outlet. Excess runoff may be sheet flow from natural and graded land surfaces or channeled flow from natural depressions, plow furrows, crop row furrows, and bedding system furrows. Use UMC Guide 1643 'Drainage Main or Lateral' for areas over 200 acres or field drainage ditch and sub-surface drain outlets."--First page.Phillip D. Coombs (Soil Conservation Service), and Mark Peterson and C. F. Cromwell, Jr. (Department of Agricultural Engineering. College of Agriculture
The Affective Impact of Financial Skewness on Neural Activity and Choice
Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice
Recommended from our members
Power dissipation in HTS coated conductor coils under the simultaneous action of AC and DC currents and fields
On a connection between factor analysis and multidimensional unfolding
Given the preference ordering of each of a number of individuals over a set of stimuli, it is proposed that if the preference orderings are generated in a Euclidean space of r dimensions which can be recovered by unfolding the preference orderings, then a factor analysis of the correlations between individual's preference orderings will yield a space of r + 1 dimensions with the original r -space embedded in it, and the additional dimension will be one of social utility. The proposition is clearly shown to be satisfied by means of the Monte Carlo technique for both random and lattice stimuli in three dimensions and for two other examples with random stimuli in one and two dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45708/1/11336_2005_Article_BF02289726.pd
- …