1,144 research outputs found

    Pushing the limits of excited-state g-factor measurements

    Get PDF
    Current developments in excited-state g-factor measurements are discussed with an emphasis on cases where the experimental methodology is being extended into new regimes. The transient-field technique, the recoil in vacuum method, and moment measurements with LaBr3 detectors are discussed.This research was supported in part by the Australian Research Council grant numbers DP140102986, DP140103317 and DP70101673. B.P.M. T.J.G. and B.J.C. acknowledge the support of the Australian Government Research Training Program. Support for the Heavy Ion Accelerator Facility operations through the Australian National Collaborative Research Infrastructure Strategy (NCRIS) program is acknowledged

    Pushing the limits of excited-state gg-factor measurements

    Full text link
    Current developments in excited-state gg-factor measurements are discussed with an emphasis on cases where the experimental methodology is being extended into new regimes. The transient-field technique, the recoil in vacuum method, and moment measurements with LaBr3_3 detectors are discussed.Comment: 5 pages, 6 figure

    Spectroscopy and excited-state g factors in weakly collective Cd 111: Confronting collective and microscopic models

    Get PDF
    Background: The even cadmium isotopes near the neutron midshell have long been considered among the best examples of vibrational nuclei. However, the vibrational nature of these nuclei has been questioned based on E2 transition rates that are not consistent with vibrational excitations. In the neighboring odd-mass nuclei, the g factors of the low-excitation collective states have been shown to be more consistent with a deformed rotational core than a vibrational core. Moving beyond the comparison of vibrational versus rotational models, recent advances in computational power have made shell-model calculations feasible for Cd isotopes. These calculations may give insights into the emergence and nature of collectivity in the Cd isotopes.This research was supported in part by the Australian Research Council Grants No. DP120101417, No. DP130104176, No. DP140102986, No. DP140103317, No. DP170101673, and No. LE150100064. B.J.C., A.A., J.T.H.D., M.S.M.G., and T.J.G. acknowledge support of the Australian Government Research Training Program. Support for the ANU Heavy Ion Accelerator Facility operations through the Australian National Collaborative Research Infrastructure Strategy (NCRIS) program is acknowledged

    Perturbed angular distributions with LaBr3 detectors: The g factor of the first 10+ state in Cd 110 reexamined

    Get PDF
    The time differential perturbed angular distribution technique with LaBr3 detectors has been applied to the Iπ = 11-/2 isomeric state (Ex=846 keV, τ=107 ns) in 107Cd, which was populated and recoil-implanted into a gadolinium host following the 98Mo(^12C, 3n)^107Cd reaction. The static hyperfine field strength of Cd recoil implanted into gadolinium was thus measured, together with the fraction of nuclei implanted into field-free sites, under similar conditions as pertained for a previous implantation perturbed angular distribution g-factor measurement on the Iπ=10+ state in 110Cd. The 110Cdg(10+) value was thereby reevaluated, bringing it into agreement with the value expected for a seniority-two vh11/2 configuration.This research was supported in part by the Australian Research Council Grants No. DP120101417, No. DP130104176, No. DP140102986, No. DP140103317, No. DP170101673, No. LE150100064, and No. FT100100991, and by The Australian National University Major Equipment Committee Grant No. 15MEC14

    Non‐canonical autophagy functions of ATG16L1 in epithelial cells limit lethal infection by influenza A virus

    Get PDF
    Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces

    Modifying Hofstee standard setting for assessments that vary in difficulty, and to determine boundaries for different levels of achievement.

    Get PDF
    BACKGROUND: Fixed mark grade boundaries for non-linear assessment scales fail to account for variations in assessment difficulty. Where assessment difficulty varies more than ability of successive cohorts or the quality of the teaching, anchoring grade boundaries to median cohort performance should provide an effective method for setting standards. METHODS: This study investigated the use of a modified Hofstee (MH) method for setting unsatisfactory/satisfactory and satisfactory/excellent grade boundaries for multiple choice question-style assessments, adjusted using the cohort median to obviate the effect of subjective judgements and provision of grade quotas. RESULTS: Outcomes for the MH method were compared with formula scoring/correction for guessing (FS/CFG) for 11 assessments, indicating that there were no significant differences between MH and FS/CFG in either the effective unsatisfactory/satisfactory grade boundary or the proportion of unsatisfactory graded candidates (p > 0.05). However the boundary for excellent performance was significantly higher for MH (p < 0.01), and the proportion of candidates returned as excellent was significantly lower (p < 0.01). MH also generated performance profiles and pass marks that were not significantly different from those given by the Ebel method of criterion-referenced standard setting. CONCLUSIONS: This supports MH as an objective model for calculating variable grade boundaries, adjusted for test difficulty. Furthermore, it easily creates boundaries for unsatisfactory/satisfactory and satisfactory/excellent performance that are protected against grade inflation. It could be implemented as a stand-alone method of standard setting, or as part of the post-examination analysis of results for assessments for which pre-examination criterion-referenced standard setting is employed
    corecore