3,450 research outputs found

    Nonlinear techniques for forecasting solar activity directly from its time series

    Get PDF
    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension

    Significant enhancement of irreversibility field in clean-limit bulk MgB2

    Full text link
    Low resistivity ("clean") MgB2 bulk samples annealed in Mg vapor show an increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a factor of 2 in both transport and magnetic measurements. The best sample displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm and a lowering of the resistivity ratio from 15 to 3, while the critical temperature Tc decreased by only 1-2 K. These results point the way to make prepare MgB2 attractive for magnet applications.Comment: 3 pages, 4 figures, submitted to Applied Physics Letter

    Monolithic microwave integrated circuit water vapor radiometer

    Get PDF
    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility

    Magnetic polarons and magnetoresistance in EuB6

    Full text link
    EuB6 is a low carrier density ferromagnet which exhibits large magnetoresistance, positive or negative depending on temperature. The formation of magnetic polarons just above the magnetic critical temperature has been suggested by spin-flip Raman scattering experiments. We find that the fact that EuB6 is a semimetal has to be taken into account to explain its electronic properties, including magnetic polarons and magnetoresistance.Comment: 6 pages, 1 figur

    Uncovering the Hidden Order in URu2Si2 by Impurity Doping

    Full text link
    We report the use of impurities to probe the hidden order parameter of the strongly correlated metal URu_2Si_2 below the transition temperature T_0 ~ 17.5 K. The nature of this order parameter has eluded researchers for more than two decades, but is accompanied by the development of a partial gap in the single particle density of states that can be detected through measurements of the electronic specific heat and nuclear spin-lattice relaxation rate. We find that impurities in the hidden order phase give rise to local patches of antiferromagnetism. An analysis of the coupling between the antiferromagnetism and the hidden order reveals that the former is not a competing order parameter but rather a parasitic effect of the latter.Comment: 4 pages, 4 figure

    Investigating Hastily-Formed Collaborative Networks

    Get PDF
    This research explores both the human and technical aspects of the network centric environment in the context of a major disaster or incident of national significance. The National Incident Management System (NIMS) is viewed by the authors as a social network, and an organizational topology is developed to improve its effectiveness. A rapid Network Deployment Kit (RNDK) using commercial off the shelf (COTS) wireless networking technology is also proposed that facilitates immediate NIMS implementation. The integration of logical and technical analyses forms a comprehensive systems engineering proposal to facilitate collaboration in a net-centric environment. It is envisioned that the methodology used herein to derive and evaluate comprehensive networks proves extendable to other contexts thereby contributing to the netcentric body of knowledge

    Tricritical Phenomena at the Cerium γ→α\gamma \to \alpha Transition

    Full text link
    The γ→α\gamma \to \alpha isostructural transition in the Ce0.9−x_{0.9-x}Lax_xTh0.1_{0.1} system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to zero with increasing La doping and the transition changes from being first-order to continuous at a critical concentration 0.10≤xc≤0.140.10 \leq x_c \leq 0.14. At the tricritical point, the coefficient of the linear TT term in the specific heat γ\gamma and the magnetic susceptibility start to increase rapidly near xx = 0.14 and gradually approaches large values at xx=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. Near xcx_c, the Wilson ratio, RWR_W, has a value of 3.0, signifying the presence of magnetic fluctuations. Also, the low-temperature resistivity shows that the character of the low-temperature Fermi-liquid is changing

    One-to-one full scale simulations of laser wakefield acceleration using QuickPIC

    Get PDF
    We use the quasi-static particle-in-cell code QuickPIC to perform full-scale, one-to-one LWFA numerical experiments, with parameters that closely follow current experimental conditions. The propagation of state-of-the-art laser pulses in both preformed and uniform plasma channels is examined. We show that the presence of the channel is important whenever the laser self-modulations do not dominate the propagation. We examine the acceleration of an externally injected electron beam in the wake generated by 10 J laser pulses, showing that by using ten-centimeter-scale plasma channels it is possible to accelerate electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is provided. Good qualitative agreement between the two codes is found, but the 2D full PIC simulations fail to predict the correct laser and wakefield amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue - Laser & Plasma Accelerators - 8/200

    A versatile and compact capacitive dilatometer

    Full text link
    We describe the design, construction, calibration, and operation of a relatively simple differential capacitive dilatometer suitable for measurements of thermal expansion and magnetostriction from 300 K to below 1 K with a low-temperature resolution of about 0.05 angstroms. The design is characterized by an open architecture permitting measurements on small samples with a variety of shapes. Dilatometers of this design have operated successfully with a commercial physical property measurement system, with several types of cryogenic refrigeration systems, in vacuum, in helium exchange gas, and while immersed in liquid helium (magnetostriction only) to temperatures of 30 mK and in magnetic fields to 45 T.Comment: 8 pages, incorporating 6 figures, submitted to Rev. Sci. Instru
    • …
    corecore