2,789 research outputs found

    Analysis of planetary quarantine requirements

    Get PDF
    Analysis of planetary quarantine requirement

    Miniature modular microwave end-to-end receiver

    Get PDF
    An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall

    Monolithic microwave integrated circuit water vapor radiometer

    Get PDF
    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility

    Non-linear effect of uniaxial pressure on superconductivity in CeCoIn5

    Full text link
    We study single-crystal CeCoIn5 with uniaxial pressure up to 3.97 kbar applied along the c-axis. We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We discuss the temperature dependence in terms of the general trend that Tc decreases in anisotropic heavy-fermion compounds as they move towards three-dimensional behavior.Comment: 6 pages, 4 figure

    Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    Full text link
    We report four probe measurements of the low field magnetoresistance in single core/shell GaAs/MnAs nanowires synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.Comment: Submitted to Applied Physics Letters; some typos corrected and a defective figure replace

    One-to-one full scale simulations of laser wakefield acceleration using QuickPIC

    Get PDF
    We use the quasi-static particle-in-cell code QuickPIC to perform full-scale, one-to-one LWFA numerical experiments, with parameters that closely follow current experimental conditions. The propagation of state-of-the-art laser pulses in both preformed and uniform plasma channels is examined. We show that the presence of the channel is important whenever the laser self-modulations do not dominate the propagation. We examine the acceleration of an externally injected electron beam in the wake generated by 10 J laser pulses, showing that by using ten-centimeter-scale plasma channels it is possible to accelerate electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is provided. Good qualitative agreement between the two codes is found, but the 2D full PIC simulations fail to predict the correct laser and wakefield amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue - Laser & Plasma Accelerators - 8/200

    Magnetic field induced lattice anomaly inside the superconducting state of CeCoIn5_5: evidence of the proposed Fulde-Ferrell-Larkin-Ovchinnikov state

    Full text link
    We report high magnetic field linear magnetostriction experiments on CeCoIn5_5 single crystals. Two features are remarkable: (i) a sharp discontinuity in all the crystallographic axes associated with the upper superconducting critical field Bc2B_{c2} that becomes less pronounced as the temperature increases; (ii) a distinctive second order-like feature observed only along the c-axis in the high field (10 T ≲B≤Bc2 \lesssim B \leq B_{c2}) low temperature (T≲T \lesssim 0.35 K) region. This second order transition is observed only when the magnetic field lies within 20o^o of the ab-planes and there is no signature of it above Bc2B_{c2}, which raises questions regarding its interpretation as a field induced magnetically ordered phase. Good agreement with previous results suggests that this anomaly is related to the transition to the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.Comment: 3 figures, 5 page

    The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future

    Get PDF
    Northwestern Alaska has been highly affected by changing climatic patterns with new temperature and precipitation maxima over the recent years. In particular, the Baldwin and northern Seward peninsulas are characterized by an abundance of thermokarst lakes that are highly dynamic and prone to lake drainage like many other regions at the southern margins of continuous permafrost. We used Sentinel-1 synthetic aperture radar (SAR) and Planet CubeSat optical remote sensing data to analyze recently observed widespread lake drainage. We then used synoptic weather data, climate model outputs and lake ice growth simulations to analyze potential drivers and future pathways of lake drainage in this region. Following the warmest and wettest winter on record in 2017/2018, 192 lakes were identified as having completely or partially drained by early summer 2018, which exceeded the average drainage rate by a factor of ∼ 10 and doubled the rates of the previous extreme lake drainage years of 2005 and 2006. The combination of abundant rain- and snowfall and extremely warm mean annual air temperatures (MAATs), close to 0 ∘C, may have led to the destabilization of permafrost around the lake margins. Rapid snow melt and high amounts of excess meltwater further promoted rapid lateral breaching at lake shores and consequently sudden drainage of some of the largest lakes of the study region that have likely persisted for millennia. We hypothesize that permafrost destabilization and lake drainage will accelerate and become the dominant drivers of landscape change in this region. Recent MAATs are already within the range of the predictions by the University of Alaska Fairbanks' Scenarios Network for Alaska and Arctic Planning (UAF SNAP) ensemble climate predictions in scenario RCP6.0 for 2100. With MAAT in 2019 just below 0 ∘C at the nearby Kotzebue, Alaska, climate station, permafrost aggradation in drained lake basins will become less likely after drainage, strongly decreasing the potential for freeze-locking carbon sequestered in lake sediments, signifying a prominent regime shift in ice-rich permafrost lowland regions

    An algorithm for LET-analysis

    Get PDF
    An algorithm for the derivation of LET-distributions from pulse- height spectra obtained with proportional counters is described. The method is based on Fourier transformation: it is applicable to spherical as well as non-spherical proportional counters. The relation between the energy mean, LD, of LET and the energy mean, yD, of the lineal energy density is given
    • …
    corecore