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ABSTRACT. An algorithm  for the derivation of LET-distributions from pulse-height 
spectra obtained with proportional  counters is described. The  method is based on 
Fourier transformation;  it is applicable to spherical as well as non-spherical pro- 
portional  counters.  The  relation between the energy  mean, E,, of LET  and  the energy 
mean, g,, of the lineal energy  density is given. 

1. Introduction 
Tissue equivalent  proportional  counters  are  frequently used for the analysis 

of LET-distributions  in  neutron fields (Rossi and Rosenzweig 1955; Wilson 
and Field  1970).  The  method  is  limited by  the  fact  that  the experimentally 
observed pulse height  distributions  are the result of various  random  factors 
which cannot  in  general be easily separated. These  limitations of the  LET- 
analysis  with  proportional  counters  have been one of the  starting  points of 
microdosimetry when R'ossi and his co-workers realized that  the observed 
distributions  are more closely related to  the biological effectiveness of a given 
type of radiation than  the distribution of linear  energy transfer. Linear  energy 
transfer is only  a  mean  value of the  rate of energy loss of a  charged  particle 
along  it's track, while the observed pulse height  distributions reflect the  actual 
variations of energy deposit'ion in the  irradiated  tissue. 

There  are,  however, cases where one needs an approximate  overall  evaluation 
of radiation  quality for the purpose of comparing  different types of radiation. 
I n  these cases, and  this refers  particularly to  radiotherapy  and  to  radiation 
protection  applications,  LET-distributions offer a convenient  frame of refer- 
ence. It is for this reason that  the present  paper  re-evaluates the algorithm 
used in the LET-analysis. 

The  established  method of LET analysis  (Rossi  and Rosenzweig 1955) is 
based  on the assumption that energy loss straggling of the  heavy charged 
particle,  radial  extension of its  8-ray halo and finite  length of its  track can be 
neglected. It is assumed that a  charged  particle  traverses the sensitive region 
of the  counter  without change of its  LET,  and  that  the energy  deposited  is the 
product of the  LET  and of the chord  length  in  the region.  These  assumptions 
are  tenable  only  under the t'wo conditions:  (i)  that  the  neutron energies are 
high  enough so that most of the recoil tracks  are long compared  with the 
dimensions of t'he region and  (ii) that  the stopping power of the particles and 
the diameter of the region are large  enough that energy loss straggling and  the 
efflux and influx of &rays  can be  neglected. Strictly speaking  these  conditions 
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are  mutually exclusive. It will not be the  object of this  paper to examine the 
deviations  from  the idealized assumptions, or to discuss methods to account 
for these  deviations. Instead it will be postulated that  the measurements are 
performed in a  range of neutron or heavy  charged  particle energies and  site 
diameters for which the  two conditions  mentioned  above  are  approximately 
fulfilled. Under  these  assumptions, that is  within  the framework of the con- 
ventional  approximation, an algorithm will be described which has  certain 
advantages over the established  method. 

2. Formulation of the  problem  and  discussion of the  conventional  solution 
Under  the simplifications mentioned  above the problem of the LET-analysis 

can be formulated  in  the following way. A region, U, is  randomly  traversed  by 
charged  particles. The  distribution of chord length, l ,  resulting  in the  random 
traversal is g(1). The  distribution of LET is t(L).  The  energy, E, deposited  in 
U  during  a  traversal  is the product of the  two  independent  random  variables l 
and L. The  distribution, f(E), of E is  experimentally determined;  the chord- 
length  distribution, g ( l ) ,  is known;  the  LET-distribution, t (L) ,  has  to be derived. 

Let  the sum  distributions belonging to  the densities f (E), g(Z) and t (L)  be 
denoted  by P(E), G(1) and T(L). For example P ( E )  is the probability that  the 
energy  deposited in a passage is  equal to or less than E. Then one obtains 

F ( E )  = t(L) G(E/L) dL I- 
and, therefore, 

In the special case of a  sphere of diameter d one has  the chord-length  distri- 
bution : 

and, therefore, 

f (E) = d2 t(L) L-2dL. 
2E a 

L=Eld 

By differentiation  one  obtains 

and, therefore, 

t (L)  = -  '[ -E- dfdeE)+f(E)) with E = Ld. 2 
9 
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This  equation  corresponds to  the formula of Rossi and Rosenzweig (1955) 
which is commonly applied to derive LET-spectra from  pulse  height  distri- 
butions  obtained  with  spherical  proportional  counters.  The  method  is  limited 
by  the  fact  that it applies to  the sphere and  not  in general to  other  chord- 
length  distributions. Nor can it be applied  in the case where  one  deals  with 
sensitive regions of different  diameters ; the  latter would for  instance be the 
case if measurements were taken from an assemblage of microscopic spherical 
scintillators. 

It is  also  a  certain  restriction that application of eqn (6) necessitates 
numerical  smoothing of the experimental  distribution f(E) in  order to convert 
this  spectrum  into a  differentiable  function. 

In   the following section an  alternative  technique of LET-analysis will be 
discussed which is applicable to  arbitrary chord-length  distributions and which 
makes it unnecessary to convert the experimental data  into a  differentiable 
function. 

3. Solution of the problem by Fourier transformation 
E is the  product of two  independent  random  variables L and 1. It is, however, 

more  convenient to deal  with the sum of two  random variables than with  their 
product, Therefore, instead of the variables E ,  L and l their  logarithms will be 
considered. The new variables and  their  distributions will be  designated  by 
Greek letters : 

E = l n E ,   R = l n L  and  X=lnZ. ( 7 )  

The  probability  distributions of the logarithms  can  be  expressed  in  terms of the 
original  variables and  their  distributions : 

and  in  an analogous  way 

.(A) = ___ = Lt(L) dT(L) 
dln L 

E is the sum of the  two  random variables h and A, and  the  distribution of E is 
equal to  the convolution  integral of the distributions of h and A:  

It is not necessary to  evaluate  this  integral  equation  in  order  to  obtain .(R) 
from + ( E )  and y (h) .  Instead one can use the convolution  theorem (see e.g. 
Feller  1950). According to  this  theorem  the  Fourier  transform, or in  the 
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language of probability  theory the characteristic  function, of the distribution 
of E is  equal to  the product of the Fourier  transforms of the distributions of 
h and A. Accordingly one has 

.*(x) = +*(x)/y*(x)  (12) 
if .*(X), +*(x) and y*(x)  are the Fourier  transforms of the distributions .(h), 
+ ( E )  and y(X). By a reverse Fourier Oransform applied to '*(X) one  obtains 
.(A) and  thereby t (L) .  

The  fast  Fourier  transform algorithm of Cooley and  Tukey (1965) is now 
widely available  even in versions for small computers.  The  numerical  execution 
of the solution described above  therefore  presents  no  practical difficulties.? 

A  numerical  example  can be used to illustrate the different steps  involved 
in  the computation.  The  curve  in fig. l (a)  represents  a pulse-height distribution, 
+ ( E )  = Ef(E), obtained  with  a spherical proportional  counter exposed to a 
field of 3.7 MeV neutrons  plus  a  y-ray  component  (Biavati, Rossi and Boer 
1965). The  curve in fig. l (b)  represents the chord-length  distribution, Zg(Z), in 
the sphere. 
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Fig. 1. Example for the interrelation between energy deposition spectrum,  chord-length 
distribution, and  LET-distribution. The energy deposition spectrum (a)  has been 
obtained  in a field of 3.7 MeV neutrons  with a spherical proportional  counter of an 
equivalent  diameter of 1.16 Km. The solution (c) is such that  its convolution with 
the chord-length  distribution (b) is equal to (a). 
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In  the numerical  evaluation the functions are represented by  arrays which 
contain the function  values on an equidistant  point  grid  over  the  intervals 
depicted  in fig. 1. The  distribution + ( E ) ,  for example,  is  represented by  the 

~~~~ 

t A computer code of the solution described in this paper is available in FORTRAN IV. 
It accepts  two input  arrays f(E) and g(Z) and derives t (L) ,  its  sum distribution and  its 
moments. The program uses the Cooley-Tukey fast  Fourier t'ransform in the version of 
the I.B.M. SHARE-library. 
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array i = 0 , 1 ,  ..., N - 1. The  number, N ,  of points in  the  array can be 
varied, but  it  has  to be a power of 2 for the  fast  Fourier  transform algorithm of 
Cooley and  Tukey.  For  this  algorithm  the  computing  times  are  proportional 
to N 1nN  and  not  to N 2  as would normally be the case. Therefore,  very high 
values of N may be chosen;  typically, however, a  value o f N  = 1024 is sufficient. 
The  Fourier  transform  is  calculated as 

+*(xk) = C exp (2riklN) +(ek)  k = 0 , 1 ,  . , ., N -  1 .  
N-l 

i=O 
(13) 

This  amounts to  treating  the  distribution + ( E )  as periodic over the full interval 
shown in fig. 1 ; the assumption does not  introduce  errors  as long as  the  interval 
is  large  compared  with the  total  width of the  distribution. Relations cor- 
responding to  eqn (13) hold for the functions y*(x)  and .*(X). The reference 
interval,  that is the  interval of periodicity,  has to  be the same for the variables 
E ,  h and A. I n  terms of the original variables this means that E ,  l and L vary 
over the same factor;  in  the example of  fig. 1 this is  a  factor of lo8. A change 
in  the  units of E ,  l and L amounts to a  shift of the  distributions  in fig. 1. A 
suitable choice of the  units brings the  distributions  into  the inside of the interval ; 
this is  not  essential but a matter of convenience. 

According to eqn (13) the component +*(xk) in  the transformed  array 
belongs to  the frequency k in  the full  interval. In  order to  obtain  the  array 
.*(xk), which is the transform of the  LET-distribution, one divides the  two 
complex arrays $*(xk) and y*(xk) component by component. Because the 
original arrays  are real  valued  functions the  kth  and  the ( N  - k)th component 
of the transforms  are  conjugated complex. This  can easily be seen from eqn 

The  solution .(A) = Lt(L) which is obtained by a  backwards  transformation 
(13).  

from .*(x) : 

.(Ai) = exp ( - 277ki/N) .*(xk) i = 0,  1, . . ., N - 1 
'\"l 

k=O 

is  plotted  in fig. l(c). It is  not  practicable to plot the characteristic  functions 
because they  vary  too  rapidly  with x. 

It should be noted that  the assumptions  underlying the  LET-analysis  are 
not  valid  in  the region of low LET,  and  that, therefore, the initial part of the 
function Lt(L), which corresponds to  the y-ray  component of the  radiation 
field, is meaningless. It should further be noted that one may  in  certain cases 
obtain  negative  values  in the solution.  This then means that  there is no  distri- 
bution which, folded into  the chord-length  distribution, yields the experi- 
mentally observed spectrum.  The  reason  can be experimental inaccuracies or 
inapplicability of the simplifying assumptions discussed in section 1. 

In  the preceding discussion the multiplicative  relation between the three 
random  variables L, l and E has been reduced to  an additive  relation by 
transition to  the logarithms.  This  transition  made it possible to apply  the 
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Fourier  transformation;  in  the same way one may choose the Laplace trans- 
form. It should be noted that  the transition to  t'he  logarithms and  their 
distributions could be avoided if instead of the characteristic  functions  (Fourier 
transforms)  one were to use the so-called moment  generating  functions.  This 
reflects the fact that  the moment  generating  funct'ion of a  distribution  is 
essentially  equal to  the characteristic  function of the  distribution of the 
logarithm of the  random variable.  Transition to  the logarithm  has, however, 
great  advantage because the logarithms cover a much narrower  range of values 
than  the original variables  L and E. Fourier  analysis  has previously been used 
for the solution of the energy  straggling problem (Kellerer 1970). In  this case 
one deals with  the variable E and  not  its  logarithm. This, and  the  fact  that 
microdosimetric distributions,  as  in the example of fig. 1 ,  extend over many 
orders of magnitude,  can  lead to excessive array sizes in  the numerical com- 
putations. In  the LET-analysis no such problems arise because the logarithmic 
distributions  are  always sufficiently narrow. 

4. Evaluation of the moments of the  distribution 
The  energy, E, deposited in a passage is the  product of the two  statistically 

independent  random  variables  l  and L. Therefore, the moments of E are  the 
product of the moments of 1 and  L. By using eqn (2) one can show this  as 
follows : 

E" = lyEnf(E)dE 

= IOmt(L)  LndL = 1nLn. 
" 

I n  microdosimetry the lineal energy  density,  y,  is  frequently used instead of the 
variable E.  This quantity is defined (ICRU 1971) by 

y = Eli (15) 

where i is the mean chord length of the region of interest.  The  quantity y is the 
microdosimetric analogue of the linear  energy  transfer L. According to  eqn 
(14) one has 

Specifically, one has  the mean  values :t 
yn = ~ n z n p .  
- " 

(16) 

g = L  (17) 

t These mean values, that is the first moments of the distributions f ( y )  and t ( L ) ,  are 
usually termed frequency mean, gF, of y and  track mean, rT, of L. This is done to  avoid 
confusion with the dose, or energy, averages defined in eqns (19) and (20). 
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and  the second moments: 
- " 
y2 = ~2 1 2 / 1 2 .  

The dose average LET, E,, and  the dose average lineal energy density, go, 
are  important  quantities for practical  applications : 

and  iff  (y) is the  distribution of y 

From  eqns (18)  to (20) one obtains the relation which connects gD with ED: 
" 

g, = LD12/i2. (21)  

For a  sphere of diameter d one  has  according to eqn (3)  

i =  $a 
and 

and,  therefore, 

g, +E,. (24) 

These  formulae  can  be used to infer the  track average and  the dose average 
LET directly  from the observed  values fjF and g,; they also offer a  convenient 
check of the numerical  computations.  For the example  depicted in fig. 1 one 
obtains  the values 

gF = ET = 10.9 (keV pm-l) 

go = 71.5 (keVpm-l) 

E,  = 63.5 (keVpm-l) 1 ( 2 5 )  

in  agreement  with  eqns (17)  and (24).  
The  relations for the moments  given  in  this  section  are special cases of more 

general  relations which have  been  derived  earlier  (Kellerer 1970), and which 
account for additional  factors  such  as energy-loss straggling. The more  general 
relations  have to  be used whenever the conditions discussed in  section 1 are 
not  met. 

For mono-energetic neutron fields some of these  conditions  have been 
evaluated  recently  (Kellerer 1971a) .  
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5. Conclusions 
Rossi and Rosenzweig (1955) have  derived  a  formula which permits  the 

derivation of a LET-spectrum from an energy-deposition  spectrum obtained 
with  spherical  proportional  counters. Turner, Anderson, Birkhoff and  Johnson 
(1970)  have  developed  a  Monte Carlo procedure to perform this analysis  in the 
more general case of a  non-spherical reference volume.  They  have also written 
a Monte Carlo program  (Birkhoff, Turner, Anderson,  Feola and  Hamm 1970) 
to derive  chord-length  distributions for cylindrical regions. The solution de- 
scribed  in the present  paper  can be used as  an  alternative  to  the established 
methods. It is  analytical and, therefore,  not  limited  in  precision; it is also 
applicable to regions of arbitrary shape or to cases where one deals  with regions 
of varying size. Convenient  analytical  expressions  for  chord-length  distri- 
butions  in cylinders  have been derived  recently  (Kellerer  1971b).  These 
distributions  in  conjunction  with  the solution discussed in  this  paper can be 
used for the analysis of measurements  obtained  in cylindrica’l proportional 
counters. 

This  paper  is  based  on work performed  under  Contract AT-(30-1)-2740 for 
the U.S. Atomic Energy Commission. 

R ~ S U M E  
Un algorithme pour l’analyse du  transfert lineaire d’hergie 

On dircrit un algorithme pour la dirrivat’ion des distributions de LET de  spectres des hauteurs 
d’impulsions,  obtenues au moyen des  compteurs  proportionnels. La methode se base sur la 
transformation de Fourier; elle est applicable aux compteurs  proportionnels sphbriques et  non- 
sphhiques.  La relation est donnire entre la  valeur moyenne d’bnergie, E,, de  LET, et  la  valeur 
moyenne d’bnergie, g,, de I’irvbnement. 

ZUSAMMENFASSUNG 
Ein Algorithmus fur die Analyse des linearen Energieumsatzes (LET) 

Nan beschreibt  einen  Algorithmus fur die Ableitung der LET-Verteilungen aus den mittels 
Proportionalzahler  erhaltenen Impulsamplitudenspektra. Das Verfahren basiert auf der Fourier- 
Transformation; 8s ist sowohl fur sphhrische als auch  fur nichtspharische  Proportionalzahler 
geeignet. Es wird das Verhaltnis zwischen dem Energiedurchschnittswert, E,, von LET,  und 
dem Energiedurchschnittswert, QD, des Ereignisses angegeben. 

P e s m ~ e  
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