1,007 research outputs found
The Mid-IR and X-ray Selected QSO Luminosity Function
We present the J-band luminosity function of 1838 mid-infrared and X-ray
selected AGNs in the redshift range 0<z<5.85. These luminosity functions are
constructed by combining the deep multi-wavelength broad-band observations from
the UV to the mid-IR of the NDWFS Bootes field with the X-ray observations of
the XBootes survey and the spectroscopic observations of the same field by
AGES. Our sample is primarily composed of IRAC-selected AGNs, targeted using
modifications of the Stern et al.(2005) criteria, complemented by MIPS 24
microns and X-ray selected AGNs to alleviate the biases of IRAC mid-IR
selection against z~4.5 quasars and AGNs faint with respect to their hosts.
This sample provides an accurate link between low and high redshift AGN
luminosity functions and does not suffer from the usual incompleteness of
optical samples at z~3. We find that the space density of the brightest quasars
strongly decreases from z=3 to z=0, while the space density of faint quasars is
at least flat, and possibly increasing, over the same redshift range. At z>3 we
observe a decrease in the space density of quasars of all brightnesses. We
model the luminosity function by a double power-law and find that its evolution
cannot be described by either pure luminosity or pure density evolution, but
must be a combination of both. Our best-fit model has bright and faint
power-law indices consistent with the low redshift measurements based on the
2QZ and 2SLAQ surveys and it generally agrees with the number of bright quasars
predicted by other LFs at all redshifts. If we construct the QSO luminosity
function using only the IRAC-selected AGNs, we find that the biases inherent to
this selection method significantly modify the behavior of phi*(z) only for z<1
and have no significant impact upon the characteristic magnitude M*_J(z).Comment: Corrected minor typo in equations (4) and (6). Accepted for
publication in The Astrophysical Journal. 56 pages + 6 tables + 16 figure
A fundamental test of the Higgs Yukawa coupling at RHIC in A+A collisions
Searches for the intermediate boson, , the heavy quantum of the Weak
Interaction, via its semi-leptonic decay, , in the 1970's instead
discovered unexpectedly large hadron production at high , notably ,
which provided a huge background of from internal and external
conversions. Methods developed at the CERN ISR which led to the discovery of
direct-single- in 1974, later determined to be from the semi-leptonic
decay of charm which had not yet been discovered, were used by PHENIX at RHIC
to make precision measurements of heavy quark production in p-p and Au+Au
collisions, leading to the puzzle of apparent equal suppression of light and
heavy quarks in the QGP. If the Higgs mechanism gives mass to gauge bosons but
not to fermions, then a proposal that all 6 quarks are nearly massless in a
QGP, which would resolve the puzzle, can not be excluded. This proposal can be
tested with future measurements of heavy quark correlations in A+A collisionsComment: 12 pages, 16 figures, 26th Winter Workshop on Nuclear Dynamics, Ocho
Rios, Jamaica WI, January 2-9, 2010. Corrected citation of 1974 direct single
lepton discover
Mid-Infrared Galaxy Luminosity Functions from the AGN and Galaxy Evolution Survey
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron
measured by combining photometry from the IRAC Shallow Survey with redshifts
from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey
Bootes field. The well-defined IRAC samples contain 3800-5800 galaxies for the
3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained
relatively complete luminosity functions in the local redshift bin of z < 0.2
for all four IRAC channels that are well fit by Schechter functions. We found
significant evolution in the luminosity functions for all four IRAC channels
that can be fit as an evolution in M* with redshift, \Delta M* = Qz. While we
measured Q=1.2\pm0.4 and 1.1\pm0.4 in the 3.6 and 4.5 micron bands consistent
with the predictions from a passively evolving population, we obtained
Q=1.8\pm1.1 in the 8.0 micron band consistent with other evolving star
formation rate estimates. We compared our LFs with the predictions of
semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5
micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron.
These models also predicted a comparable Q value to our luminosity functions at
8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also
measured the luminosity functions separately for early and late-type galaxies.
While the luminosity functions of late-type galaxies resemble those for the
total population, the luminosity functions of early-type galaxies in the 3.6
and 4.5 micron bands indicate deviations from the passive evolution model,
especially from the measured flat luminosity density evolution. Combining our
estimates with other measurements in the literature, we found (53\pm18)% of the
present stellar mass of early-type galaxies has been assembled at z=0.7.Comment: 39 pages, 15 figures, submitted to ApJ (revised following the referee
report
- …