169 research outputs found

    Addressing care-seeking as well as insurance-seeking selection biases in estimating the impact of health insurance on out-of-pocket expenditure

    Get PDF
    Health Insurance (HI) programmes in low-income countries aim to reduce the burden of individual out-of-pocket (OOP) health care expenditure. However, if the decisions to purchase insurance and to seek care when ill are correlated with the expected healthcare expenditure, the use of naïve models may produce biased estimates of the impact of insurance membership on OOP expenditure. Whilst many studies in the literature have accounted for the endogeneity of the insurance decision, the potential selection bias due to the care-seeking decision has not been taken into account. We extend the Heckman selection model to account simultaneously for both care-seeking and insurance-seeking selection biases in the healthcare expenditure regression model. The proposed model is illustrated in the context of a Vietnamese HI programme using data from a household survey of 1192 individuals conducted in 1999. Results were compared with those of alternative econometric models making no or partial allowance for selection bias. In this illustrative example, the impact of insurance membership on reducing OOP expenditures was underestimated by 21 percentage points when selection biases were not taken into account. We believe this is an important methodological contribution that will be relevant to future empirical work

    Genome Analysis, Metabolic Potential, and Predatory Capabilities of Herpetosiphon llansteffanense sp. nov.

    Get PDF
    Herpetosiphon spp. are ubiquitous, chemoheterotrophic, filamentous gliding bacteria with the ability to prey on other microbes through a “wolf pack” mechanism. The genus currently comprises four known species (H. aurantiacus, H. geysericola, H. giganteus, and H. gulosus), which produce antimicrobial secondary metabolites such as siphonazole. As part of a study isolating myxobacterial wolf pack predators, we serendipitously isolated a novel environmental strain (CA052B) from the edge of a stream at Llansteffan, United Kingdom, which was identified as a member of the Herpetosiphon genus. A lawn culture method was utilized to analyze the predatory activity of CA052B against 10 prey organisms of clinical relevance. CA052B was found to prey on Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus faecalis, Bacillus subtilis, and Candida albicans. Purified CA052B outer membrane vesicles also exhibited killing activity against the prey organisms when tested by flow cytometry. 16S rRNA sequencing of CA052B showed 98 to 99% identity with other Herpetosiphon species members. Comparing the genome of CA052B with the publicly available genomes of H. aurantiacus and H. geysericola revealed average nucleotide identities of only 84% and 91%, respectively, whereas the genome-to-genome distance calculation showed sequence identities of 28.2% and 46.6%, respectively. Biochemical characterization also revealed distinctions between CA052B and both H. gulosus and H. giganteus. Thus, strain CA052BT (= DSM 107618T = NBRC 113495T) is proposed to be the type strain of a novel species, Herpetosiphon llansteffanense sp. nov. The genome sequence of CA052B also revealed diverse secondary metabolite biosynthetic clusters, encouraging further exploration of its antibiotic production potential

    Polyphenol oxidase affects normal nodule development in red clover (Trifolium pratense L.)

    Get PDF
    Polyphenol oxidase (PPO) may have multiple functions in tissues depending on its cellular or tissue localisation. Here we use PPO RNAi transformants of red clover (Trifolium pratense) to determine the role PPO plays in normal development of plants, and especially in N2-fixing nodules. In red clover, PPO was not essential for either growth or nodule production, or for nodule function in plants grown under optimal, N-free conditions. However, absence of PPO resulted in a more reduced environment in all tissues, as measured by redox potential, and caused subtle developmental changes in nodules. Leaves and, to a lesser extent nodules, lacking PPO tended to accumulate phenolic compounds.A comparison of nodules of two contrasting clones by microscopy revealed that nodules lacking PPO were morphologically and anatomically subtly altered, and that phenolics accumulated in different cells and tissues. Developing nodules lacking PPO were longer, and there were more cell layers within the squashed cell layer (SCL), but the walls of these cells were less thickened and the cells were less squashed. Within the N2-fixing zone, bacteroids appeared more granular and were less tightly packed together

    Evidence of sequestration of triclabendazole and associated metabolites by extracellular vesicles of <i>Fasciola hepatica</i>

    Get PDF
    Fascioliasis is a neglected zoonotic disease that infects humans and ruminant species worldwide. In the absence of vaccines, control of fascioliasis is primarily via anthelminthic treatment with triclabendazole (TCBZ). Parasitic flatworms, including Fasciola hepatica, are active secretors of extracellular vesicles (EVs), but research has not been undertaken investigating EV anthelmintic sequestration. Adult F. hepatica were cultured in lethal and sub-lethal doses of TCBZ and its active metabolites, in order to collect EVs and evaluate their morphological characteristics, production and anthelmintic metabolite content. Transmission electron microscopy demonstrated that F. hepatica exposed to TCBZ and its metabolites produced EVs of similar morphology, compared to non-TCBZ exposed controls, even though TCBZ dose and/or TCBZ metabolite led to measurable structural changes in the treated F. hepatica tegument. qNano particle analysis revealed that F. hepatica exposed to TCBZ and its metabolites produced at least five times greater EV concentrations than non-TCBZ controls. A combined mass spectrometry and qNano particle analysis confirmed the presence of TCBZ and the TCBZ–sulphoxide metabolite in anthelmintic exposed EVs, but limited TCBZ sulphone was detectable. This data suggests that EVs released from adult F. hepatica have a biological role in the sequestration of TCBZ and additional toxic xenobiotic metabolites

    Corrigendum to “Comparative genomics and pan-genomics of the Myxococcaceae, including a description of five novel species:Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov. and Pyxidicoccus trucidator sp. nov.” [Genome Biol. Evol. 12(12) (2020) 2289-2302]

    Get PDF
    FIG. 2.—Scanning electron micrographs of typical myxobacterial cells. (A) strain AM401, (B) strain CA060A. Bars are 5 mm long.Published as part of Chambers, James, Sparks, Natalie, Sydney, Natashia, Livingstone, Paul G, Cookson, Alan R & Whitworth, David E, 2020, Comparative Genomics and Pan-Genomics of the Myxococcaceae, including a Description of Five Novel Species: Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov., and Pyxidicoccus trucidator sp. nov., pp. 2289-2302 in Genome Biology and Evolution 12 (12) on page 2294, DOI: 10.1093/gbe/evaa212, http://zenodo.org/record/456162

    Predatory Organisms with Untapped Biosynthetic Potential:Descriptions of Novel Corallococcus Species C. aberystwythensis sp. nov., C. carmarthensis sp. nov., C. exercitus sp. nov., C. interemptor sp. nov., C. llansteffanensis sp. nov., C. praedator sp. nov., C. sicarius sp. nov., and C. terminator sp. nov

    Get PDF
    Corallococcus spp. are common soil-dwelling organisms which kill and consume prey microbes through the secretion of antimicrobial substances. Two species of Corallococcus have been described previously (Corallococcus coralloides and Corallococcus exiguus). A polyphasic approach was taken to characterise antimicrobial, biochemical and phenotypic properties of eight Corallococcus spp. strains and the two type strains. We also report here the genome sequence of the C. exiguus type strain (DSM 14696T). The genomes of the eight candidate strains, C. exiguus DSM 14696T and C. coralloides DSM 2259T, had an average nucleotide identity below 95% and digital DNA-DNA hybridisation scores less than the 70% lower bound for species identity, indicating they belong to distinct species. All ten strains, including the two type strains, were thoroughly characterised, including biochemical analysis of their fatty acid methyl esters, substrate utilisation and sugar assimilation. Each strain gave a distinct profile of properties, which together with their genomic differences supports the proposal of the eight candidate strains as novel species: Corallococcus exercitus sp. nov. (AB043AT = DSM 108849T = NBRC 113887T), Corallococcus interemptor sp. nov. (AB047AT = DSM 108843T = NBRC 113888T), Corallococcus aberystwythensis sp. nov. (AB050AT = DSM 108846T = NBRC 114019T), Corallococcus praedator sp. nov. (CA031BT = DSM 108841T = NBRC 113889T), Corallococcus sicarius sp. nov. (CA040BT = DSM 108850T = NBRC 113890T), Corallococcus carmarthenensis sp. nov. (CA043DT = DSM 108842T = NBRC 113891T), Corallococcus llansteffanensis sp. nov. (CA051BT = DSM 108844T = NBRC 114100T) and Corallococcus terminator sp. nov. (CA054AT = DSM 108848T = NBRC 113892T)
    corecore