20,142 research outputs found
Decoding Pure Rotational Molecular Spectra for Asymmetric Molecules
In this paper we demonstrate how asymmetric molecular rotational spectra may
be introduced to students both "pictorially" and with simple formulae. It is
shown that the interpretation of such spectra relies heavily upon pattern
recognition. The presentation of some common spectral patterns in near-prolate
asymmetric rotational spectra provides a means by which spectral assignment,
and approximate rotational constant determination, may be usefully explored in
the physics and chemistry classrooms. To aid in this endeavor we have created a
supporting, free, web page and mobile web page.Comment: 20 pages, 11 figure
Testing conformal mapping with kitchen aluminum foil
We report an experimental verification of conformal mapping with kitchen
aluminum foil. This experiment can be reproduced in any laboratory by
undergraduate students and it is therefore an ideal experiment to introduce the
concept of conformal mapping. The original problem was the distribution of the
electric potential in a very long plate. The correct theoretical prediction was
recently derived by A. Czarnecki (Can. J. Phys. 92, 1297 (2014))
Gyrotron experiments employing a field emission array cathode
The design and operation of a field emission array (FEA) cathode and the subsequent demonstration of the first FEA gyrotron are presented. Up to 10 mA from 30 000 tips was achieved reproducibly from each of ten chips in a gyrotron environment, namely, a vacuum 1 x 10(-8) mbar, -50 kV potential with multiple chip operation, The design parameters of the FEA gun were similar to those of a magnetron injection gun with an achievable electron beam current of 50-100 mA and measured power 720 W cw. Coherent microwave radiation was detected in both TE(02) at 30.1 GHz and TE(03) at 43.6 GHz, with a starting current of 1 mA
Composting paper and grass clippings with anaerobically treated palm oil mill effluent
Purpose The purpose of this study is to investigate the composting performance of anaerobically treated palm oil mill effluent (AnPOME) mixed with paper and grass clippings. Methods Composting was conducted using a laboratory scale system for 40 days. Several parameters were determined: temperature, mass reduction, pH, electrical conductivity, colour, zeta potential, phytotoxicity and final compost nutrients. Results The moisture content and compost mass were reduced by 24 and 18 %, respectively. Both final compost pH value and electrical conductivity were found to increase in value. Colour (measured as PtCo) was not suitable as a maturity indicator. The negative zeta potential values decreased from −12.25 to −21.80 mV. The phytotoxicity of the compost mixture was found to decrease in value during the process and the final nutrient value of the compost indicates its suitability as a soil conditioner. Conclusions From this study, we conclude that the addition of paper and grass clippings can be a potential substrate to be composted with anaerobically treated palm oil mill effluent (AnPOME). The final compost produced is suitable for soil conditioner
Obtaining Stiffness Exponents from Bond-diluted Lattice Spin Glasses
Recently, a method has been proposed to obtain accurate predictions for
low-temperature properties of lattice spin glasses that is practical even above
the upper critical dimension, . This method is based on the observation
that bond-dilution enables the numerical treatment of larger lattices, and that
the subsequent combination of such data at various bond densities into a
finite-size scaling Ansatz produces more robust scaling behavior. In the
present study we test the potential of such a procedure, in particular, to
obtain the stiffness exponent for the hierarchical Migdal-Kadanoff lattice.
Critical exponents for this model are known with great accuracy and any
simulations can be executed to very large lattice sizes at almost any bond
density, effecting a insightful comparison that highlights the advantages -- as
well as the weaknesses -- of this method. These insights are applied to the
Edwards-Anderson model in with Gaussian bonds.Comment: corrected version, 10 pages, RevTex4, 12 ps-figures included; related
papers available a http://www.physics.emory.edu/faculty/boettcher
The Gravitational Lensing in the QSO 1208+10 from the Proximity Effect in its Lyman alpha Forest
The quasar Q1208+1011 (z_{em}=3.8) is the second highest redshift double
quasar ever detected. Several indications point toward it being a gravitational
lensed system, although a definitive proof is still lacking. We present new
evidence of its lensed nature based on the weakness of the ``proximity effect''
measured in the high resolution Lyman absorption spectrum of the QSO. A
luminosity amplification as large as 22 has been derived from this analysis.
Indications on the redshift of the lensing galaxy can be obtained from the
analysis of the intervening heavy element absorption systems discovered in the
QSO high resolution spectrum. On statistical and dynamical grounds a MgII
system present at z=1.13 appears as the most likely candidate for the lensing
galaxy. We compare the observed parameters with a simple isothermal model for
the lens to derive the properties of the lensing galaxy. The resulting
magnification factor is smaller, although marginally consistent with that
derived by the analysis of the proximity effect.Comment: 11 pages, 2 Postscript figures, ApJ in pres
Nicotine strongly activates dendritic cell-mediated adaptive immunity - potential role for progression of atherosclerotic lesions
Background - Antigen-presenting cells (APCs) such as monocytes and dendritic cells (DCs) stimulate T-cell proliferation and activation in the course of adaptive immunity. This cellular interaction plays a role in the growth of atherosclerotic plaques. Nicotine has been shown to increase the growth of atherosclerotic lesions. Therefore, we investigated whether nicotine can stimulate APCs and their T cell–stimulatory capacity using human monocyte–derived DCs and murine bone marrow–derived DCs as APCs. Methods and Results - Nicotine dose-dependently (10-8 to 10-4 mol/L) induced DC expression of costimulatory molecules (ie, CD86, CD40), MHC class II, and adhesion molecules (ie, LFA-1, CD54). Moreover, nicotine induced a 7.0-fold increase in secretion of the proinflammatory TH1 cytokine interleukin-12 by human DCs. These effects were abrogated by the nicotinic receptor antagonist -bungarotoxin and mecamylamine, respectively. The effects of nicotine were mediated in part by the phosphorylation of the PI3 kinase downstream target Akt and the mitogen-activated kinases ERK and p38 MAPK. Nicotine-stimulated APCs had a greater capacity to stimulate T-cell proliferation and cytokine secretion, as documented by mixed lymphocyte reactions and ovalbumin-specific assays with ovalbumin-transgenic DO10.11 mice. In a murine model of atherosclerosis, nicotine significantly enhanced the recruitment of DCs to atherosclerotic lesions in vivo. Conclusions - Nicotine activates DCs and augments their capacity to stimulate T-cell proliferation and cytokine secretion. These effects of nicotine may contribute to its influence on the progression of atherosclerotic lesions
Recommended from our members
Balancing ion parameters and fluorocarbon chemical reactants for SiO2 pattern transfer control using fluorocarbon-based atomic layer etching
In manufacturing, etch profiles play a significant role in device patterning. Here, the authors present a study of the evolution of etch profiles of nanopatterned silicon oxide using a chromium hard mask and a CHF3/Ar atomic layer etching in a conventional inductively coupled plasma tool. The authors show the effect of substrate electrode temperature, chamber pressure, and electrode forward power on the etch profile evolution of nanopatterned silicon oxide. Chamber pressure has an especially significant role, with lower pressure leading to lower etch rates and higher pattern fidelity. The authors also find that at higher electrode forward power, the physical component of etching increases and more anisotropic etching is achieved. By carefully tuning the process parameters, the authors are able to find the best conditions to achieve aspect-ratio independent etching and high fidelity patterning, with an average sidewall angle of 87° ± 1.5° and undercut values as low as 3.7 ± 0.5% for five trench sizes ranging from 150 to 30 nm. Furthermore, they provide some guidelines to understand the impact of plasma parameters on plasma ion distribution and thus on the atomic layer etching process
- …