1,454 research outputs found

    Cerebrovascular Hemodynamics during Concentric and Eccentric Phases of Heavy Resistance Exercise

    Get PDF
    Rapid and drastic fluctuations in arterial blood pressures, such as those occurring during heavy resistance exercise pose a unique challenge to the maintenance of cerebral perfusion. During high-intensity leg cycling, regulation of cerebral perfusion is reduced by rapid decreases in beat-to-beat fluctuations in blood pressure (diastolic phase) rather than rapid increases (systolic phase). The purpose of this study was to test the hypothesis that rhythmic heavy resistance exercise will similarly impair the regulation of cerebral blood flow during the diastolic phase of beat-to-beat fluctuations in pressure. We studied seven healthy male subjects. Beat-to-beat finger arterial pressures, and middle cerebral artery blood velocity (MCAv) were measured during 10 repetitions (REP) of rhythmic high intensity leg press exercise. Velocities and arterial pressures were evaluated during both the isotonic concentric and eccentric phases of each REP. The Gosling pulsatility index (PI) of MCAv of each REP was calculated as MCAv systolic-MCAv diastolic/MCAv mean. During the concentric phase, systolic arterial pressures progressively increased from REP 1 through REP 10 (P \u3c 0.001), while systolic MCAv was not different across all REPs (P \u3e0.2). Diastolic arterial pressures during the eccentric phase also increased from REP 1 through REP 10 (P = 0.03) however diastolic MCAv decreased during REPs 7-10 compared with REP 2 (P ≤ 0.02). MCAv PI also increased during REP 7-10 compared to REP 2 (P ≤ 0.02). Similar to high-intensity leg cycling, our data suggest that during rhythmic high-intensity leg press exercise, cerebral perfusion is well controlled during periods of rapid increases in blood pressure, but regulation of cerebral perfusion is impaired during the diastolic phase of beat-to-beat fluctuations in pressure

    Panel Discussion On The Management Of Allergies In Geriatric Patients†

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111236/1/jgs00790.pd

    Beyond the Baroreflex: A New Measure of Autonomic Regulation Based on the Time-Frequency Assessment of Variability, Phase Coherence and Couplings

    Get PDF
    For decades the role of autonomic regulation and the baroreflex in the generation of the respiratory sinus arrhythmia (RSA) - modulation of heart rate by the frequency of breathing - has been under dispute. We hypothesized that by using autonomic blockers we can reveal which oscillations and their interactions are suppressed, elucidating their involvement in RSA as well as in cardiovascular regulation more generally. R-R intervals, end tidal CO2, finger arterial pressure, and muscle sympathetic nerve activity (MSNA) were measured simultaneously in 7 subjects during saline, atropine and propranolol infusion. The measurements were repeated during spontaneous and fixed-frequency breathing, and apnea. The power spectra, phase coherence and couplings were calculated to characterise the variability and interactions within the cardiovascular system. Atropine reduced R-R interval variability (p \u3c 0.05) in all three breathing conditions, reduced MSNA power during apnea and removed much of the significant coherence and couplings. Propranolol had smaller effect on the power of oscillations and did not change the number of significant interactions. Most notably, atropine reduced R-R interval power in the 0.145–0.6 Hz interval during apnea, which supports the hypothesis that the RSA is modulated by a mechanism other than the baroreflex. Atropine also reduced or made negative the phase shift between the systolic and diastolic pressure, indicating the cessation of baroreflex-dependent blood pressure variability. This result suggests that coherent respiratory oscillations in the blood pressure can be used for the non-invasive assessment of autonomic regulation

    Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment

    Get PDF
    The Joint Polar Satellite System (JPSS) Project requested the NASA Engineering and Safety Center (NESC) conduct an independent evaluation of the Micrometeoroid and Orbital Debris (MMOD) models used in the latest JPSS MMOD risk assessment. The principal focus of the assessment was to compare Orbital Debris Engineering Model version 3 (ORDEM 3.0) with the Meteoroid and Space Debris Terrestrial Environment Reference version 2009 (MASTER-2009) and Aerospace Debris Environment Projection Tool (ADEPT) and provide recommendations to the JPSS Project regarding MMOD protection. The outcome of the NESC assessment is contained in this report

    Atomic Resonance and Scattering

    Get PDF
    Contains research objectives, summary of research and reports on four research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300National Science Foundation (Grant GP-28679)National Bureau of Standards (Grant NBS2-9011)U. S. Air Force - Office of Scientific Research (Contract F44620-72-C-0057

    Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    Get PDF
    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike

    Conflict, compromise and collusion: dilemmas for psychosocially-oriented practitioners in the mental health system

    Get PDF
    The nature and causes of mental health problems are contested. The dominant approach in services views them as ‘illnesses like any other’. The structure, legislative base and practices of mainstream mental health services are largely predicated on this idea, known variously as the medical, illness, disease or diagnostic model. By contrast, psychosocial theories highlight the role of the events and circumstances of peoples’ lives. The tension between these two approaches can lead to challenges and dilemmas for psychosocially oriented practitioners. Clinical psychologists participated in interviews and a focus group about these challenges and how they managed them. A grounded theory was constructed which suggested that their responses took three forms: openly ‘dissenting’ (conflict), strategically ‘stepping into’ the medical model (compromise), or inadvertently ‘slipping’ into it (colluding). Strategies for managing the challenges included focusing on clients; foregrounding clients’ contexts and understandings; holding the tension between ‘expert’ and ‘not-knowing’ approaches; using ordinary language; forging robust working relationships; being mindful of difference and of constraints on colleagues; recognising one’s power and ability to influence; self-care and work/life balance; taking encouragement from small changes; consolidating a personal philosophy; mutual support and solidarity; drawing on scholarship and finally engaging in activism outside work

    Environment Challenges for Exploration of the Moon

    Get PDF
    NASA's Constellation Program is designing a new generation of human rated launch and space transportation vehicles to first replace the Space Shuttle fleet, then support develop of a permanent human habitat on the Moon, and ultimately prepare for human exploration of Mars. The ambitious first step beyond low Earth orbit is to develop the infrastructure required for conducting missions to a variety of locations on the lunar surface for periods of a week and establishment of a permanent settlement at one of the lunar poles where crews will serve for periods on the order of approx.200 days. We present an overview of the most challenging aspects of the lunar environment that will need to be addressed when developing transport and habitat infrastructure for long term human presence on the Moon including low temperatures and dusty regolith surfaces, radiation environments due to galactic cosmic rays and solar energetic particles, charging of lunar infrastructure when exposed to lunar plasma environments, and secondary meteor environments generated by primary impacts on the lunar surface
    • …
    corecore