15,098 research outputs found
Driver circuit for inductive loads
Circuit, based on use of power transistors which do not display second breakdown under valve loading, drives inductive loads. Peak voltages, power dissipations, heat sink requirements, and thermal stability considerations can be obtained by theoretical analysis
Pulse width-pulse rate modulator
Attitude control system designed for rockets regulates duty cycle of pneumatic valves so less fuel is required. Operation time of each valve is directly proportional to error signal and the dead band about a null is controlled by independently adjustable threshold circuits
Design of hysteresis circuits using differential amplifiers
Design equations for hysteresis circuit are based on the following assumptions: amplifier input impedance is larger than source impedance; amplifier output impedance is less than load impedance; and amplifier switches state when differential input voltage is approximately zero. Circuits are designed to any given specifications
Coarse roll-rate gain-control circuit
Circuit is used in spin-rate computing unit of control system for solar pointing rocket during its acquisition mode. Direction cosines from magnetometers and coarse sun sensors derive function that is approximately roll-rate times sum of absolute value of direction cosines
Gyrotron experiments employing a field emission array cathode
The design and operation of a field emission array (FEA) cathode and the subsequent demonstration of the first FEA gyrotron are presented. Up to 10 mA from 30 000 tips was achieved reproducibly from each of ten chips in a gyrotron environment, namely, a vacuum 1 x 10(-8) mbar, -50 kV potential with multiple chip operation, The design parameters of the FEA gun were similar to those of a magnetron injection gun with an achievable electron beam current of 50-100 mA and measured power 720 W cw. Coherent microwave radiation was detected in both TE(02) at 30.1 GHz and TE(03) at 43.6 GHz, with a starting current of 1 mA
Pacific Hake, Merluccius productus, Autecology: A Timely Review
Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem
(CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements
associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are
often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west
coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated
model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate
variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested
Electrostatic protection of the Solar Power Satellite and rectenna
Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure
Recommended from our members
High-Flow Vascular Malformations in Children.
Children can have a variety of intracranial vascular anomalies ranging from small and incidental with no clinical consequences to complex lesions that can cause substantial neurologic deficits, heart failure, or profoundly affect development. In contrast to high-flow lesions with direct arterial-to-venous shunts, low-flow lesions such as cavernous malformations are associated with a lower likelihood of substantial hemorrhage, and a more benign course. Management of vascular anomalies in children has to incorporate an understanding of how treatment strategies may affect the normal development of the central nervous system. In this review, we discuss the etiologies, epidemiology, natural history, and genetic risk factors of three high-flow vascular malformations seen in children: brain arteriovenous malformations, intracranial dural arteriovenous fistulas, and vein of Galen malformations
Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis
We present an extensive synthetic observational analysis of numerically-
simulated radio galaxies designed to explore the effectiveness of conventional
observational analyses at recovering physical source properties. These are the
first numerical simulations with sufficient physical detail to allow such a
study. The present paper focuses on extraction of magnetic field properties
from nonthermal intensity information. Synchrotron and inverse-Compton
intensities provided meaningful information about distributions and strengths
of magnetic fields, although considerable care was called for. Correlations
between radio and X-ray surface brightness correctly revealed useful dynamical
relationships between particles and fields. Magnetic field strength estimates
derived from the ratio of X-ray to radio intensity were mostly within about a
factor of two of the RMS field strength along a given line of sight. When
emissions along a given line of sight were dominated by regions close to the
minimum energy/equipartition condition, the field strengths derived from the
standard power-law-spectrum minimum energy calculation were also reasonably
close to actual field strengths, except when spectral aging was evident.
Otherwise, biases in the minimum- energy magnetic field estimation mirrored
actual differences from equipartition. The ratio of the inverse-Compton
magnetic field to the minimum-energy magnetic field provided a rough measure of
the actual total energy in particles and fields in most instances, within an
order of magnitude. This may provide a practical limit to the accuracy with
which one may be able to establish the internal energy density or pressure of
optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2
February 1, 200
- …