1,140 research outputs found

    Improving Photometric Calibration of Meteor Video Camera Systems

    Get PDF
    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below

    NASA's Meteoroid Environments Office's Response to Three Significant Bolide Events Over North America

    Get PDF
    Being the only U.S. Government entity charged with monitoring the meteor environment, the Meteoroid Environment Office has deployed a network of all sky and wide field meteor cameras, along with the appropriate software tools to quickly analyze data from these systems. However, the coverage of this network is still quite limited, forcing the incorporation of data from other cameras posted to the internet in analyzing many of the fireballs reported by the public and media. A procedure has been developed that determines the analysis process for a given fireball event based on the types and amount of data available. The differences between these analysis process will be explained and outlined by looking at three bolide events, all of which were large enough to produce meteorites. The first example is an ideal event - a bright meteor that occurred over NASA's All Sky Camera Network on August 2, 2014. With clear video of the event from various angles, a high-accuracy trajectory, beginning and end heights, orbit and approximate brightness/size of the event are able to be found very quickly using custom software. The bolide had the potential to have dropped meteorites, so dark flight analysis and modeling was performed, allowing potential fall locations to be mapped as a function of meteorite mass. The second case study was a bright bolide that occurred November 3, 2014 over West Virginia. This was just north of the NASA southeastern all-sky network, and just south of the Ohio-Pennsylvania network. This case study showcases the MEO's ability to use social media and various internet sources to locate videos of the event from obscure sources (including the Washington Monument) for anything that will permit a determination of a basic trajectory and fireball light curve The third case study will highlight the ability to use doppler weather radar in helping locate meteorites, which enable a definitive classification of the impactor. The input data and analysis steps differ for each case study, but the goals remain the same - a trajectory, orbit, and mass estimate for the bolide within hours of the event, and, for events with a high probability of producing meteorites, a location of the strewn field within a day

    Molecular Genetic Influences on Normative and Problematic Alcohol Use in a Population-Based Sample of College Students

    Get PDF
    Background: Genetic factors impact alcohol use behaviors and these factors may become increasingly evident during emerging adulthood. Examination of the effects of individual variants as well as aggregate genetic variation can clarify mechanisms underlying risk. Methods: We conducted genome-wide association studies (GWAS) in an ethnically diverse sample of college students for three quantitative outcomes including typical monthly alcohol consumption, alcohol problems, and maximum number of drinks in 24 h. Heritability based on common genetic variants (h2SNP) was assessed. We also evaluated whether risk variants in aggregate were associated with alcohol use outcomes in an independent sample of young adults. Results: Two genome-wide significant markers were observed: rs11201929 in GRID1 for maximum drinks in 24 h, with supportive evidence across all ancestry groups; and rs73317305 in SAMD12 (alcohol problems), tested only in the African ancestry group. The h2SNP estimate was 0.19 (SE = 0.11) for consumption, and was non-significant for other outcomes. Genome-wide polygenic scores were significantly associated with alcohol outcomes in an independent sample. Conclusions: These results robustly identify genetic risk for alcohol use outcomes at the variant level and in aggregate. We confirm prior evidence that genetic variation in GRID1impacts alcohol use, and identify novel loci of interest for multiple alcohol outcomes in emerging adults. These findings indicate that genetic variation influencing normative and problematic alcohol use is, to some extent, convergent across ancestry groups. Studying college populations represents a promising avenue by which to obtain large, diverse samples for gene identification

    When the Sky Falls: Performing Initial Assessments of Bright Atmospheric Events

    Get PDF
    The 2013 Chelyabinsk super bolide was the first "significant" impact event to occur in the age of social media and 24 hour news. Scientists, used to taking many days or weeks to analyze fireball events, were hard pressed to meet the immediate demands (within hours) for answers from the media, general public, and government officials. Fulfilling these requests forced many researchers to exploit information available from various Internet sources - videos were downloaded from sites like Youtube, geolocated via Google Street View, and quickly analyzed with improvised software; Twitter and Facebook were scoured for eyewitness accounts of the fireball and reports of meteorites. These data, combined with infrasound analyses, enabled a fairly accurate description of the Chelyabinsk event to be formed within a few hours; in particular, any relationship to 2012 DA14 (which passed near Earth later that same day) was eliminated. Results of these analyses were quickly disseminated to members of the NEO community for press conferences and media interviews. Despite a few minor glitches, the rapid initial assessment of Chelyabinsk was a triumph, permitting the timely conveyance of accurate information to the public and the incorporation of social media into fireball analyses. Beginning in 2008, the NASA Meteoroid Environments Office, working in cooperation with Western's Meteor Physics Group, developed processes and software that permit quick characterization - mass, trajectory, and orbital properties - of fireball events. These tools include automated monitoring of Twitter to establish the time of events (the first tweet is usually no more than a few seconds after the fireball), mining of Youtube and all sky camera web archives to locate videos suitable for analyses, use of Google Earth and Street View to geolocate the video locations, and software to determine the fireball trajectory and object orbital parameters, including generation of animations suitable for popular media and presentations. This presentation will give a short description of the characterization procedure and show applications of the tools, which have become vital to answering the question of "What was that bright light in the sky?" in the post-Chelyabinsk, 24/7 news world

    The unusual occurrence of green algal balls of <i>Chaetomorpha linum</i> on a beach in Sydney, Australia.

    Get PDF
    In spring 2014, thousands of green algal balls were washed up at Dee Why Beach, Sydney, New South Wales, Australia. Reports of algal balls are uncommon in marine systems, and mass strandings on beaches are even more rare, sparking both public and scientific interest. We identified the algal masses as Chaetomorpha linum by using light microscopy and DNA sequencing. We characterize the size and composition of the balls from Dee Why Beach and compare them to previous records of marine algal balls. We describe the environmental conditions that could explain their appearance, given the ecophysiology of C. linum

    Large Meteoroid Impact on the Moon 17 March 2013

    Get PDF
    NASA's routine monitoring of lunar impact flashes has recorded nearly 300 impacts since 2006. On 17 March 2013 the brightest event to date was observed in two 0.35m telescopes at the Marshall Space Flight Center. With a peak red magnitude brighter than 4.3 and an impact flash visible for over 1 second, the impact kinetic energy was equivalent to nearly 5 tons of TNT. A possible association with a meteor shower observed in the Earth's atmosphere will be described. Corresponding crater dimensions and observability of the impact crater by Lunar Reconnaissance Orbiter will also be discussed
    corecore