21,631 research outputs found

    Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model

    Get PDF
    The process of nuclear multifragmentation has been implemented, together with evaporation and fission channels of the disintegration of excited remnants in nucleus-nucleus collisions using percolation theory and the intranuclear cascade model. Colliding nuclei are treated as face--centered--cubic lattices with nucleons occupying the nodes of the lattice. The site--bond percolation model is used. The code can be applied for calculation of the fragmentation of nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure

    Strategies for protecting intellectual property when using CUDA applications on graphics processing units

    Get PDF
    Recent advances in the massively parallel computational abilities of graphical processing units (GPUs) have increased their use for general purpose computation, as companies look to take advantage of big data processing techniques. This has given rise to the potential for malicious software targeting GPUs, which is of interest to forensic investigators examining the operation of software. The ability to carry out reverse-engineering of software is of great importance within the security and forensics elds, particularly when investigating malicious software or carrying out forensic analysis following a successful security breach. Due to the complexity of the Nvidia CUDA (Compute Uni ed Device Architecture) framework, it is not clear how best to approach the reverse engineering of a piece of CUDA software. We carry out a review of the di erent binary output formats which may be encountered from the CUDA compiler, and their implications on reverse engineering. We then demonstrate the process of carrying out disassembly of an example CUDA application, to establish the various techniques available to forensic investigators carrying out black-box disassembly and reverse engineering of CUDA binaries. We show that the Nvidia compiler, using default settings, leaks useful information. Finally, we demonstrate techniques to better protect intellectual property in CUDA algorithm implementations from reverse engineering

    Random billiards with wall temperature and associated Markov chains

    Full text link
    By a random billiard we mean a billiard system in which the standard specular reflection rule is replaced with a Markov transition probabilities operator P that, at each collision of the billiard particle with the boundary of the billiard domain, gives the probability distribution of the post-collision velocity for a given pre-collision velocity. A random billiard with microstructure (RBM) is a random billiard for which P is derived from a choice of geometric/mechanical structure on the boundary of the billiard domain. RBMs provide simple and explicit mechanical models of particle-surface interaction that can incorporate thermal effects and permit a detailed study of thermostatic action from the perspective of the standard theory of Markov chains on general state spaces. We focus on the operator P itself and how it relates to the mechanical/geometric features of the microstructure, such as mass ratios, curvatures, and potentials. The main results are as follows: (1) we characterize the stationary probabilities (equilibrium states) of P and show how standard equilibrium distributions studied in classical statistical mechanics, such as the Maxwell-Boltzmann distribution and the Knudsen cosine law, arise naturally as generalized invariant billiard measures; (2) we obtain some basic functional theoretic properties of P. Under very general conditions, we show that P is a self-adjoint operator of norm 1 on an appropriate Hilbert space. In a simple but illustrative example, we show that P is a compact (Hilbert-Schmidt) operator. This leads to the issue of relating the spectrum of eigenvalues of P to the features of the microstructure;(3) we explore the latter issue both analytically and numerically in a few representative examples;(4) we present a general algorithm for simulating these Markov chains based on a geometric description of the invariant volumes of classical statistical mechanics

    Magnetorheological landing gear: 2. Validation using experimental data

    Get PDF
    Aircraft landing gears are subjected to a wide range of excitation conditions with conflicting damping requirements. A novel solution to this problem is to implement semi-active damping using magnetorheological (MR) fluids. In part 1 of this contribution, a methodology was developed that enables the geometry of a flow mode MR valve to be optimized within the constraints of an existing passive landing gear. The device was designed to be optimal in terms of its impact performance, which was demonstrated using numerical simulations of the complete landing gear system. To perform the simulations, assumptions were made regarding some of the parameters used in the MR shock strut model. In particular, the MR fluid's yield stress, viscosity, and bulk modulus properties were not known accurately. Therefore, the present contribution aims to validate these parameters experimentally, via the manufacture and testing of an MR shock strut. The gas exponent, which is used to model the shock strut's nonlinear stiffness, is also investigated. In general, it is shown that MR fluid property data at high shear rates are required in order to accurately predict performance prior to device manufacture. Furthermore, the study illustrates how fluid compressibility can have a significant influence on the device time constant, and hence on potential control strategies

    Solving the Initial Value Problem of two Black Holes

    Get PDF
    We solve the elliptic equations associated with the Hamiltonian and momentum constraints, corresponding to a system composed of two black holes with arbitrary linear and angular momentum. These new solutions are based on a Kerr-Schild spacetime slicing which provides more physically realistic solutions than the initial data based on conformally flat metric/maximal slicing methods. The singularity/inner boundary problems are circumvented by a new technique that allows the use of an elliptic solver on a Cartesian grid where no points are excised, simplifying enormously the numerical problem.Comment: 4 pages, 3 figures. Minor corrections, some points clarified, and one reference added. To appear in Phys. Rev. Let

    Hormonal replacement therapy prescribing in menopausal women in the UK: A descriptive study

    Get PDF
    BACKGROUND: Recent studies on the prescribing of hormonal replacement therapy (HRT) medicines to treat symptoms of menopause are lacking. AIM: To describe the prescribing of HRT in a cohort of UK menopausal women. DESIGN & SETTING: Population-based drug utilization study using IQVIA Medical Research Database. METHOD: Primary care data of women with recorded menopause and/or 50 years and older between January 2010 and November 2021 were extracted from the database. The incidence rate (IR) of women who received their first prescription for HRT was calculated annually using person-years at risk (PYAR) as the denominator. IRs of HRT were estimated by type and route of administration. Relative changes in annual IR were expressed as percentages and the average percentage change was assessed using linear regression. Annual prescribing prevalence per 100 women was calculated using mid-year menopausal population estimates. RESULTS: The IR of prescribing of HRT increased from 5.01 in 2010-18.16 per 1000 PYAR in 2021, a relative increase of 13.64% (95% CI 6.97-20.30) per year. IR of fixed combinations of HRT increased from 3.33 to 12.23 per 1000 PYAR in 2010 and 2021, respectively. Transdermal formulations of HRT increased from 1.48 to 14.55 per 1000 PYAR in 2010 and 2021, respectively. The overall proportion of women in receipt of a prescription for HRT changed from 7.89% in 2010 to 6.8% in 2020. CONCLUSION: Our study shows steady increase in the number of women receiving their first prescription for HRT during the study period which suggests regained acceptance of HRT medicines

    The Galactic Exoplanet Survey Telescope (GEST)

    Full text link
    The Galactic Exoplanet Survey Telescope (GEST) will observe a 2 square degree field in the Galactic bulge to search for extra-solar planets using a gravitational lensing technique. This gravitational lensing technique is the only method employing currently available technology that can detect Earth-mass planets at high signal-to-noise, and can measure the frequency of terrestrial planets as a function of Galactic position. GEST's sensitivity extends down to the mass of Mars, and it can detect hundreds of terrestrial planets with semi-major axes ranging from 0.7 AU to infinity. GEST will be the first truly comprehensive survey of the Galaxy for planets like those in our own Solar System.Comment: 17 pages with 13 figures, to be published in Proc. SPIE vol 4854, "Future EUV-UV and Visible Space Astrophysics Missions and Instrumentation

    Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity

    Get PDF
    We perform 3D numerical simulations in full general relativity to study the stability of rapidly rotating, supramassive neutron stars at the mass-shedding limit to dynamical collapse. We adopt an adiabatic equation of state with Γ=2\Gamma = 2 and focus on uniformly rotating stars. We find that the onset of dynamical instability along mass-shedding sequences nearly coincides with the onset of secular instability. Unstable stars collapse to rotating black holes within about one rotation period. We also study the collapse of stable stars which have been destabilized by pressure depletion (e.g. via a phase transition) or mass accretion. In no case do we find evidence for the formation of massive disks or any ejecta around the newly formed Kerr black holes, even though the progenitors are rapidly rotating.Comment: 16 pages, to appear in Phys. Rev.

    The discomforting rise of ' public geographies': a 'public' conversation.

    Get PDF
    In this innovative and provocative intervention, the authors explore the burgeoning ‘public turn’ visible across the social sciences to espouse the need to radically challenge and reshape dominant and orthodox visions of ‘the academy’, academic life, and the role and purpose of the academic

    Critical Behavior of a Three-State Potts Model on a Voronoi Lattice

    Full text link
    We use the single-histogram technique to study the critical behavior of the three-state Potts model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8000 sites. We consider the effect of an exponential decay of the interactions with the distance,J(r)=J0exp(ar)J(r)=J_0\exp(-ar), with a>0a>0, and observe that this system seems to have critical exponents γ\gamma and ν\nu which are different from the respective exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν\gamma/\nu remains essentially the same. We find numerical evidences (although not conclusive, due to the small range of system size) that the specific heat on this random system behaves as a power-law for a=0a=0 and as a logarithmic divergence for a=0.5a=0.5 and a=1.0a=1.0Comment: 3 pages, 5 figure
    corecore