31,172 research outputs found

    Correlation of low speed wind tunnel and flight test data for V/STOL aircraft

    Get PDF
    The XV-5B fan-in-wing aircraft and the Y0V-10 RCF rotating cylinder flap aircraft were subjected to wind tunnel tests. These tests were conducted specifically to provide for correlation between wind tunnel and inflight aerodynamics and noise test data. Correlation between aerodynamic and noise data are presented and testing techniques that are related to the accuracy of the data, or that might affect the correlations, are discussed

    Correlation of wind-tunnel and flight-test aerodynamic data for five V/STOL aircraft

    Get PDF
    Correlation of wind tunnel and flight test aerodynamic data for five V/STOL aircraf

    Preliminary Abundance Analysis of Galactic Bulge Main Sequence, Subgiant, and Giant Branch Stars Observed During Microlensing with Keck/HIRES

    Get PDF
    We present an abundance analysis of six main sequence turnoff, subgiant, and giant branch stars toward the Galactic bulge that were observed with Keck/HIRES during microlensing events. This is an early look at the first detailed chemical analysis of main sequence stars in the Galactic bulge. Lensing events allow the effective aperture of Keck to be increased beyond its current dimensions; although, some events still stretched its spectroscopic capabilities. Future large telescopes with high resolution and high throughput spectrometers will allow the study of abundances in distant stellar populations and in less evolved stars with greater ease.Comment: 8 pages including 2 figures. To appear in SPIE proceedings on Astronomical Telescopes and Instrumentation. Uses spie.cl

    Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale

    Get PDF
    We conducted three torsion-balance experiments to test the gravitational inverse-square law at separations between 9.53 mm and 55 micrometers, probing distances less than the dark-energy length scale λd=c/ρd485μ\lambda_{\rm d}=\sqrt[4]{\hbar c/\rho_{\rm d}}\approx 85 \mum. We find with 95% confidence that the inverse-square law holds (α1|\alpha| \leq 1) down to a length scale λ=56μ\lambda = 56 \mum and that an extra dimension must have a size R44μR \leq 44 \mum.Comment: 4 pages, 6 figure

    Oncogenic K-Ras suppresses IP<sub>3</sub>-dependent Ca<sup>2+</sup> release through remodeling of IP<sub>3</sub>Rs isoform composition and ER luminal Ca<sup>2+</sup> levels in colorectal cancer cell lines

    Get PDF
    The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine inases that controls multiple cell fate-determining signalling athways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca2+ signalling pathways control some overlapping functions with Ras, and altered Ca2+ signalling pathways are emerging as important players in oncogenic transformation, how Ca2+ signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca2+ signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca2+ release from intracellular stores is enhanced by loss of K-RasG13D through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca2+ into mitochondria and sensitivity to apoptosis was enhanced as a result of KRasG13D loss. These results suggest that suppression of Ca2+ signalling is a common response to naturally occurring levels of K-RasG13D that contributes to a survival advantage during oncogenic transformation

    Strategies for protecting intellectual property when using CUDA applications on graphics processing units

    Get PDF
    Recent advances in the massively parallel computational abilities of graphical processing units (GPUs) have increased their use for general purpose computation, as companies look to take advantage of big data processing techniques. This has given rise to the potential for malicious software targeting GPUs, which is of interest to forensic investigators examining the operation of software. The ability to carry out reverse-engineering of software is of great importance within the security and forensics elds, particularly when investigating malicious software or carrying out forensic analysis following a successful security breach. Due to the complexity of the Nvidia CUDA (Compute Uni ed Device Architecture) framework, it is not clear how best to approach the reverse engineering of a piece of CUDA software. We carry out a review of the di erent binary output formats which may be encountered from the CUDA compiler, and their implications on reverse engineering. We then demonstrate the process of carrying out disassembly of an example CUDA application, to establish the various techniques available to forensic investigators carrying out black-box disassembly and reverse engineering of CUDA binaries. We show that the Nvidia compiler, using default settings, leaks useful information. Finally, we demonstrate techniques to better protect intellectual property in CUDA algorithm implementations from reverse engineering
    corecore