29,116 research outputs found
Inflatable device for installing strain gage bridges
Methods and devices for installing in a tubular shaft multiple strain gages are disclosed with focus on a method and a device for pneumatically forcing strain gages into seated engagement with the internal surfaces of a tubular shaft in an installation of multiple strain gages in a tubular shaft. The strain gages or other electron devices are seated in a template-like component which is wrapped about a pneumatically expansible body. The component is inserted into a shaft and the body is pneumatically expanded after a suitable adhesive was applied to the surfaces
Real time flight simulation methodology
An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals
Testing a Simplified Version of Einstein's Equations for Numerical Relativity
Solving dynamical problems in general relativity requires the full machinery
of numerical relativity. Wilson has proposed a simpler but approximate scheme
for systems near equilibrium, like binary neutron stars. We test the scheme on
isolated, rapidly rotating, relativistic stars. Since these objects are in
equilibrium, it is crucial that the approximation work well if we are to
believe its predictions for more complicated systems like binaries. Our results
are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107
A polymorphic reconfigurable emulator for parallel simulation
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described
Device measures conductivity and velocity of ionized gas streams
Coaxial arrangement of primary coil and two sensing secondary coils contained inside slender quartz tube inserted into ionized stream permits simultaneous determination of conductivity and linear velocity. System results agree favorably with theory
An improved effective-one-body Hamiltonian for spinning black-hole binaries
Building on a recent paper in which we computed the canonical Hamiltonian of
a spinning test particle in curved spacetime, at linear order in the particle's
spin, we work out an improved effective-one-body (EOB) Hamiltonian for spinning
black-hole binaries. As in previous descriptions, we endow the effective
particle not only with a mass m, but also with a spin S*. Thus, the effective
particle interacts with the effective Kerr background (having spin S_Kerr)
through a geodesic-type interaction and an additional spin-dependent
interaction proportional to S*. When expanded in post-Newtonian (PN) orders,
the EOB Hamiltonian reproduces the leading order spin-spin coupling and the
spin-orbit coupling through 2.5PN order, for any mass-ratio. Also, it
reproduces all spin-orbit couplings in the test-particle limit. Similarly to
the test-particle limit case, when we restrict the EOB dynamics to spins
aligned or antialigned with the orbital angular momentum, for which circular
orbits exist, the EOB dynamics has several interesting features, such as the
existence of an innermost stable circular orbit, a photon circular orbit, and a
maximum in the orbital frequency during the plunge subsequent to the inspiral.
These properties are crucial for reproducing the dynamics and
gravitational-wave emission of spinning black-hole binaries, as calculated in
numerical relativity simulations.Comment: 22 pages, 9 figures. Minor changes to match version accepted for
publication in PR
- …