410 research outputs found

    Development of a program to gather and process data from oil and gas fields

    Get PDF
    In this thesis new software is developed to examine the needs and available options to gather information from oil and gas fields and to analyze data in an efficient manner. The program outlines potential setups as well as practical analysis techniques. The result is a program to store field data and capability to analyze input in different formats.;The developed system uses accounting, economics, engineering, and management concepts to process data. The program uses the relationships between field data gathered in a number of methods. The developed program provides a useful tool for the engineer to gather oil and gas field data and to analyze information for making a sound engineering judgment

    Space exploration by the promoter of a long human gene during one transcription cycle

    Get PDF
    An RNA polymerase has been thought to transcribe by seeking out a promoter, initiating and then tracking down the template. We add tumor necrosis factor α to primary human cells, switch on transcription of a 221-kb gene and monitor promoter position during the ensuing transcription cycle (using RNA fluorescence in situ hybridization coupled to super-resolution localization, chromosome conformation capture and Monte Carlo simulations). Results are consistent with a polymerase immobilized in a 'factory' capturing a promoter and reeling in the template, as the transcript and promoter are extruded. Initially, the extruded promoter is tethered close to the factory and so likely to re-initiate; later, the tether becomes long enough to allow re-initiation in another factory. We suggest close tethering underlies enhancer function and transcriptional 'bursting'

    Preparing Postbaccalaureates for Entry and Success in Biomedical PhD Programs

    Get PDF
    Certain racial and ethnic groups, individuals with disabilities, and those from low socioeconomic backgrounds remain underrepresented (UR) in the biomedical sciences. This underrepresentation becomes more extreme at each higher education stage. To support UR scholars during the critical transition from baccalaureate to PhD, we established an intensive, 1-yr postbaccalaureate training program. We hypothesized that this intervention would strengthen each participant’s competitiveness for leading PhD programs and build a foundation of skills and self-efficacy important for success during and after graduate school. Scholar critical analysis skills, lab technique knowledge, and Graduate Record Examination scores all improved significantly during the program. Scholars reported significant confidence growth in 21 of 24 categories related to success in research careers. In 5 yr, 91% (41/45) of scholars transitioned directly into PhD programs. Importantly, 40% (18/45) of participating postbaccalaureate scholars had previously been declined acceptance into graduate school; however, 17/18 of these scholars directly entered competitive PhD programs following our training program. Alumni reported they were “extremely well” prepared for graduate school, and 95% (39/41) are currently making progress to graduation with a PhD. In conclusion, we report a model for postbaccalaureate training that could be replicated to increase participation and success among UR scholars in the biomedical sciences

    N-Photon wave packets interacting with an arbitrary quantum system

    Full text link
    We present a theoretical framework that describes a wave packet of light prepared in a state of definite photon number interacting with an arbitrary quantum system (e.g. a quantum harmonic oscillator or a multi-level atom). Within this framework we derive master equations for the system as well as for output field quantities such as quadratures and photon flux. These results are then generalized to wave packets with arbitrary spectral distribution functions. Finally, we obtain master equations and output field quantities for systems interacting with wave packets in multiple spatial and/or polarization modes.Comment: 20 pages, 8 figures. Published versio

    Analysis of Neptune's 2017 Bright Equatorial Storm

    Get PDF
    We report the discovery of a large (\sim8500 km diameter) infrared-bright storm at Neptune's equator in June 2017. We tracked the storm over a period of 7 months with high-cadence infrared snapshot imaging, carried out on 14 nights at the 10 meter Keck II telescope and 17 nights at the Shane 120 inch reflector at Lick Observatory. The cloud feature was larger and more persistent than any equatorial clouds seen before on Neptune, remaining intermittently active from at least 10 June to 31 December 2017. Our Keck and Lick observations were augmented by very high-cadence images from the amateur community, which permitted the determination of accurate drift rates for the cloud feature. Its zonal drift speed was variable from 10 June to at least 25 July, but remained a constant 237.4±0.2237.4 \pm 0.2 m s1^{-1} from 30 September until at least 15 November. The pressure of the cloud top was determined from radiative transfer calculations to be 0.3-0.6 bar; this value remained constant over the course of the observations. Multiple cloud break-up events, in which a bright cloud band wrapped around Neptune's equator, were observed over the course of our observations. No "dark spot" vortices were seen near the equator in HST imaging on 6 and 7 October. The size and pressure of the storm are consistent with moist convection or a planetary-scale wave as the energy source of convective upwelling, but more modeling is required to determine the driver of this equatorial disturbance as well as the triggers for and dynamics of the observed cloud break-up events.Comment: 42 pages, 14 figures, 6 tables; Accepted to Icaru

    Structural-Thermal-Optical-Performance (STOP) Model Development and Analysis of a Field-widened Michelson Interferometer

    Get PDF
    An integrated Structural-Thermal-Optical-Performance (STOP) model was developed for a field-widened Michelson interferometer which is being built and tested for the High Spectral Resolution Lidar (HSRL) project at NASA Langley Research Center (LaRC). The performance of the interferometer is highly sensitive to thermal expansion, changes in refractive index with temperature, temperature gradients, and deformation due to mounting stresses. Hand calculations can only predict system performance for uniform temperature changes, under the assumption that coefficient of thermal expansion (CTE) mismatch effects are negligible. An integrated STOP model was developed to investigate the effects of design modifications on the performance of the interferometer in detail, including CTE mismatch, and other three- dimensional effects. The model will be used to improve the design for a future spaceflight version of the interferometer. The STOP model was developed using the Comet SimApp'TM' Authoring Workspace which performs automated integration between Pro-Engineer, Thermal Desktop, MSC Nastran'TM', SigFit'TM', Code V'TM', and MATLAB. This is the first flight project for which LaRC has utilized Comet, and it allows a larger trade space to be studied in a shorter time than would be possible in a traditional STOP analysis. This paper describes the development of the STOP model, presents a comparison of STOP results for simple cases with hand calculations, and presents results of the correlation effort to bench-top testing of the interferometer. A trade study conducted with the STOP model which demonstrates a few simple design changes that can improve the performance seen in the lab is also presented

    Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway

    Get PDF
    Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway
    corecore