840 research outputs found

    A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Soybean cyst nematode (<it>Heterodera glycines</it>, SCN) is the most economically damaging pathogen of soybean (<it>Glycine max</it>) in the U.S. The <it>Rhg1 </it>locus is repeatedly observed as the quantitative trait locus with the greatest impact on SCN resistance. The Glyma18g02680.1 gene at the <it>Rhg1 </it>locus that encodes an apparent leucine-rich repeat transmembrane receptor-kinase (LRR-kinase) has been proposed to be the SCN resistance gene, but its function has not been confirmed. Generation of fertile transgenic soybean lines is difficult but methods have been published that test SCN resistance in transgenic roots generated with <it>Agrobacterium rhizogenes</it>.</p> <p>Results</p> <p>We report use of artificial microRNA (amiRNA) for gene silencing in soybean, refinements to transgenic root SCN resistance assays, and functional tests of the <it>Rhg1 </it>locus LRR-kinase gene. A nematode demographics assay monitored infecting nematode populations for their progress through developmental stages two weeks after inoculation, as a metric for SCN resistance. Significant differences were observed between resistant and susceptible control genotypes. Introduction of the <it>Rhg1 </it>locus LRR-kinase gene (genomic promoter/coding region/terminator; Peking/PI 437654-derived SCN-resistant source), into <it>rhg1</it><sup>- </sup>SCN-susceptible plant lines carrying the resistant-source <it>Rhg4</it><sup><it>+ </it></sup>locus, provided no significant increases in SCN resistance. Use of amiRNA to reduce expression of the LRR-kinase gene from the <it>Rhg1 </it>locus of Fayette (PI 88788 source of <it>Rhg1</it>) also did not detectably alter resistance to SCN. However, silencing of the LRR-kinase gene did have impacts on root development.</p> <p>Conclusion</p> <p>The nematode demographics assay can expedite testing of transgenic roots for SCN resistance. amiRNAs and the pSM103 vector that drives interchangeable amiRNA constructs through a soybean polyubiqutin promoter (Gmubi), with an intron-GFP marker for detection of transgenic roots, may have widespread use in legume biology. Studies in which expression of the <it>Rhg1 </it>locus LRR-kinase gene from different resistance sources was either reduced or complemented did not reveal significant impacts on SCN resistance.</p

    Incorporation of dUTP does not mediate mutation of A:T base pairs in Ig genes in vivo

    Get PDF
    Activation-induced cytidine deaminase (AID) protein initiates Ig gene mutation by deaminating cytosines, converting them into uracils. Excision of AID-induced uracils by uracil-N-glycosylase is responsible for most transversion mutations at G:C base pairs. On the other hand, processing of AID-induced G:U mismatches by mismatch repair factors is responsible for most mutation at Ig A:T base pairs. Why mismatch processing should be error prone is unknown. One theory proposes that long patch excision in G1-phase leads to dUTP-incorporation opposite adenines as a result of the higher G1-phase ratio of nuclear dUTP to dTTP. Subsequent base excision at the A:U base pairs produced could then create non-instructional templates leading to permanent mutations at A:T base pairs (1). This compelling theory has remained untested. We have developed a method to rapidly modify DNA repair pathways in mutating mouse B cells in vivo by transducing Ig knock-in splenic mouse B cells with GFP-tagged retroviruses, then adoptively transferring GFP+ cells, along with appropriate antigen, into primed congenic hosts. We have used this method to show that dUTP-incorporation is unlikely to be the cause of AID-induced mutation of A:T base pairs, and instead propose that A:T mutations might arise as an indirect consequence of nucleotide paucity during AID-induced DNA repair

    Guidance of sentinel lymph node biopsy decisions in patients with T1-T2 melanoma using gene expression profiling.

    Get PDF
    AIM: Can gene expression profiling be used to identify patients with T1-T2 melanoma at low risk for sentinel lymph node (SLN) positivity? PATIENTS & METHODS: Bioinformatics modeling determined a population in which a 31-gene expression profile test predicted \u3c5% SLN positivity. Multicenter, prospectively-tested (n = 1421) and retrospective (n = 690) cohorts were used for validation and outcomes, respectively. RESULTS: Patients 55-64 years and ≥65 years with a class 1A (low-risk) profile had SLN positivity rates of 4.9% and 1.6%. Class 2B (high-risk) patients had SLN positivity rates of 30.8% and 11.9%. Melanoma-specific survival was 99.3% for patients ≥55 years with class 1A, T1-T2 tumors and 55.0% for class 2B, SLN-positive, T1-T2 tumors. CONCLUSION: The 31-gene expression profile test identifies patients who could potentially avoid SLN biopsy

    The Veterans Affairs Medical Center's Contribution to Plastic Surgery Education

    Get PDF
    Veterans Affairs (VA) medical centers have played a major role in graduate medical education since the 1940s. Currently, the VA health system operates 168 medical centers across the United States and supports the clinical training of more than 41 200 medical residents annually. Teaching hospitals within the VA provide subspecialty medical and surgical care and perform the majority of complex and high-risk surgical procedures. The diversity of pathologic conditions requiring a plastic surgery skill set are prominent within the VA population: cancer reconstruction, hand surgery, facial fractures, and burn care. Educational opportunities are ample. Plastic surgery residents in university-based training programs typically rotate at the VA hospital for several months each year. This study examines the relationship between the plastic surgery service and resident education within the VA hospitals

    Local Causal States and Discrete Coherent Structures

    Get PDF
    Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully-discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the \localstates, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially-localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht

    A modern way to teach and practice manual therapy

    Get PDF
    Background: Musculoskeletal conditions are the leading contributor to global disability and health burden. Manual therapy (MT) interventions are commonly recommended in clinical guidelines and used in the management of musculoskeletal conditions. Traditional systems of manual therapy (TMT), including physiotherapy, osteopathy, chiropractic, and soft tissue therapy have been built on principles such as clinician-centred assessment, patho-anatomical reasoning, and technique specificity. These historical principles are not supported by current evidence. However, data from clinical trials support the clinical and cost effectiveness of manual therapy as an intervention for musculoskeletal conditions, when used as part of a package of care. Purpose: The purpose of this paper is to propose a modern evidence-guided framework for the teaching and practice of MT which avoids reference to and reliance on the outdated principles of TMT. This framework is based on three fundamental humanistic dimensions common in all aspects of healthcare: safety, comfort, and efficiency. These practical elements are contextualised by positive communication, a collaborative context, and person-centred care. The framework facilitates best-practice, reasoning, and communication and is exemplified here with two case studies. Methods: A literature review stimulated by a new method of teaching manual therapy, reflecting contemporary evidence, being trialled at a United Kingdom education institute. A group of experienced, internationally-based academics, clinicians, and researchers from across the spectrum of manual therapy was convened. Perspectives were elicited through reviews of contemporary literature and discussions in an iterative process. Public presentations were made to multidisciplinary groups and feedback was incorporated. Consensus was achieved through repeated discussion of relevant elements. Conclusions: Manual therapy interventions should include both passive and active, person-empowering interventions such as exercise, education, and lifestyle adaptations. These should be delivered in a contextualised healing environment with a well-developed person-practitioner therapeutic alliance. Teaching manual therapy should follow this model

    The second set of pulsar discoveries by CHIME/FRB/Pulsar: 14 Rotating Radio Transients and 7 pulsars

    Full text link
    The Canadian Hydrogen Mapping Experiment (CHIME) is a radio telescope located in British Columbia, Canada. The large field of view (FOV) of \sim 200 square degrees has enabled the CHIME/FRB instrument to produce the largest FRB catalog to date. The large FOV also allows CHIME/FRB to be an exceptional pulsar and Rotating Radio Transient (RRAT) finding machine, despite saving only the metadata information of incoming Galactic events. We have developed a pipeline to search for pulsars/RRATs using DBSCAN, a clustering algorithm. Output clusters are then inspected by a human for pulsar/RRAT candidates and follow-up observations are scheduled with the more sensitive CHIME/Pulsar instrument. The CHIME/Pulsar instrument is capable of a near-daily search mode observation cadence. We have thus developed the CHIME/Pulsar Single Pulse Pipeline to automate the processing of CHIME/Pulsar search mode data. We report the discovery of 21 new Galactic sources, with 14 RRATs, 6 regular slow pulsars and 1 binary system. Owing to CHIME/Pulsar's daily observations we have obtained timing solutions for 8 of the 14 RRATs along with all the regular pulsars. This demonstrates CHIME/Pulsar's ability at finding timing solutions for transient sources

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic

    Human Skeletal Stem Cell Response to Multiscale Topography Induced by Large Area Electron Beam Irradiation Surface Treatment

    Get PDF
    The healthcare socio-economic environment is irreversibly changing as a consequence of an increasing aging population, consequent functional impairment, and patient quality of life expectations. The increasing complexity of ensuing clinical scenarios compels a critical search for novel musculoskeletal regenerative and replacement strategies. While joint arthroplasty is a highly effective treatment for arthritis and osteoporosis, further innovation and refinement of uncemented implants are essential in order to improve implant integration and reduce implant revision rate. This is critical given financial restraints and the drive to improve cost-effectiveness and quality of life outcomes. Multi-scale modulation of implant surfaces, offers an innovative approach to enhancement in implant performance. In the current study, we have examined the potential of large area electron beam melting to alter the surface nanotopography in titanium alloy (Ti6Al4V). We evaluated the in vitro osteogenic response of human skeletal stem cells to the resultant nanotopography, providing evidence of the relationship between the biological response, particularly Collagen type I and Osteocalcin gene activation, and surface nanoroughness. The current studies demonstrate osteogenic gene induction and morphological cell changes to be significantly enhanced on a topography Ra of ~40 nm with clinical implications therein for implant surface treatment and generation
    corecore