17,005 research outputs found

    Experimental Investigation of Gully Formation Under Low Pressure and Low Temperature Conditions

    Get PDF
    International audienceIntroduction: A large morphological diversity of gullies is observed on Earth and on Mars. Debris flow – a non-newtonian flow comprising a sediment-water mix – is a common process attributed to gully formation on both planets [1, 2]. Many variables can influence the morphology of debris flows (grainsizes, discharge , slope, soil moisture, etc) and their respective influences are difficult to disentangle in the field. Furthermore effects specific to the martian environment have not yet been explored in detail. Some preliminary laboratory simulations have already been performed that isolate some of these variables. Cold room experiments [3] were already perfomed to test the effect of a melted surface layer on the formation of linear gullies over sand dunes. Low pressure experiments [4] were performed to test the effect of the atmospheric pressure on erosional capacity and runout distance of the flows. Our aim is to develop a new set of experiments both under Martian atmospheric pressure and terrestrial atmospheric pressure in order to reproduce the variability of the observed morphologies under well constrained experimental conditions

    Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

    Full text link
    A new method is presented for Fourier decomposition of the Helmholtz Green Function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Helmholtz Green function are split into their half advanced+half retarded and half advanced-half retarded components. Closed form solutions are given for these components in terms of a Horn function and a Kampe de Feriet function, respectively. The systems of partial differential equations associated with these two-dimensional hypergeometric functions are used to construct a fourth-order ordinary differential equation which both components satisfy. A second fourth-order ordinary differential equation for the general Fourier coefficent is derived from an integral representation of the coefficient, and both differential equations are shown to be equivalent. Series solutions for the various Fourier coefficients are also given, mostly in terms of Legendre functions and Bessel/Hankel functions. These are derived from the closed form hypergeometric solutions or an integral representation, or both. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented

    Application of Edwards' statistical mechanics to high dimensional jammed sphere packings

    Full text link
    The isostatic jamming limit of frictionless spherical particles from Edwards' statistical mechanics [Song \emph{et al.}, Nature (London) {\bf 453}, 629 (2008)] is generalized to arbitrary dimension dd using a liquid-state description. The asymptotic high-dimensional behavior of the self-consistent relation is obtained by saddle-point evaluation and checked numerically. The resulting random close packing density scaling ϕ∼d 2−d\phi\sim d\,2^{-d} is consistent with that of other approaches, such as replica theory and density functional theory. The validity of various structural approximations is assessed by comparing with three- to six-dimensional isostatic packings obtained from simulations. These numerical results support a growing accuracy of the theoretical approach with dimension. The approach could thus serve as a starting point to obtain a geometrical understanding of the higher-order correlations present in jammed packings.Comment: 13 pages, 7 figure

    A Non-supersymmetric Interpretation of the CDF e+e-\gamma\gamma + missing E_T Event

    Full text link
    The \eegg event reported recently by the CDF Collaboration has been interpreted as a signal of supersymmetry in several recent papers. In this article, we report on an alternative non-supersymmetric interpretation of the event using an extension of the standard model which contains new physics at the electroweak scale that does not effect the existing precision electroweak data. We extend the standard model by including an extra sequential generation of fermions, heavy right-handed neutrinos for all generations and an extra singly charged SU(2)-singlet Higgs boson. We discuss possible ways to discriminate this from the standard supersymemtric interpretations.Comment: 7 pages, Latex, no figure

    Decomposition of time-covariant operations on quantum systems with continuous and/or discrete energy spectrum

    Full text link
    Every completely positive map G that commutes which the Hamiltonian time evolution is an integral or sum over (densely defined) CP-maps G_\sigma where \sigma is the energy that is transferred to or taken from the environment. If the spectrum is non-degenerated each G_\sigma is a dephasing channel followed by an energy shift. The dephasing is given by the Hadamard product of the density operator with a (formally defined) positive operator. The Kraus operator of the energy shift is a partial isometry which defines a translation on R with respect to a non-translation-invariant measure. As an example, I calculate this decomposition explicitly for the rotation invariant gaussian channel on a single mode. I address the question under what conditions a covariant channel destroys superpositions between mutually orthogonal states on the same orbit. For channels which allow mutually orthogonal output states on the same orbit, a lower bound on the quantum capacity is derived using the Fourier transform of the CP-map-valued measure (G_\sigma).Comment: latex, 33 pages, domains of unbounded operators are now explicitly specified. Presentation more detailed. Implementing the shift after the dephasing is sometimes more convenien

    Collapse models with non-white noises II: particle-density coupled noises

    Full text link
    We continue the analysis of models of spontaneous wave function collapse with stochastic dynamics driven by non-white Gaussian noise. We specialize to a model in which a classical "noise" field, with specified autocorrelator, is coupled to a local nonrelativistic particle density. We derive general results in this model for the rates of density matrix diagonalization and of state vector reduction, and show that (in the absence of decoherence) both processes are governed by essentially the same rate parameters. As an alternative route to our reduction results, we also derive the Fokker-Planck equations that correspond to the initial stochastic Schr\"odinger equation. For specific models of the noise autocorrelator, including ones motivated by the structure of thermal Green's functions, we discuss the qualitative and qantitative dependence on model parameters, with particular emphasis on possible cosmological sources of the noise field.Comment: Latex, 43 pages; versions 2&3 have minor editorial revision

    A method for dense packing discovery

    Full text link
    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845\phi=128/219\approx0.5845 and with a similar structure to the densest known tetrahedron packing.Comment: 15 pages, 5 figure
    • …
    corecore