1,458 research outputs found

    Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    Get PDF
    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease

    A topological classification of convex bodies

    Get PDF
    The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also generalizes the known classification scheme in [36]. Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. in [21], producing a hierarchy of increasingly coarse Morse-Smale complexes. We point out applications to pebble shapes.Comment: 25 pages, 10 figure

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition

    Get PDF
    Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed

    Structure of the hDmc1-ssDNA filament reveals the principles of its architecture

    Get PDF
    In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination

    Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice

    Get PDF
    Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass

    Effect of Canagliflozin on Renal Threshold for Glucose, Glycemia, and Body Weight in Normal and Diabetic Animal Models

    Get PDF
    Background: Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor in clinical development for the treatment of type 2 diabetes mellitus (T2DM). Methods: 14 C-alpha-methylglucoside uptake in Chinese hamster ovary-K cells expressing human, rat, or mouse SGLT2 or SGLT1; 3 H-2-deoxy-D-glucose uptake in L6 myoblasts; and 2-electrode voltage clamp recording of oocytes expressing human SGLT3 were analyzed. Graded glucose infusions were performed to determine rate of urinary glucose excretion (UGE) at different blood glucose (BG) concentrations and the renal threshold for glucose excretion (RTG) in vehicle or canagliflozin-treated Zucker diabetic fatty (ZDF) rats. This study aimed to characterize the pharmacodynamic effects of canagliflozin in vitro and in preclinical models of T2DM and obesity. Results: Treatment with canagliflozin 1 mg/kg lowered RT G from 415612 mg/dl to 94610 mg/dl in ZDF rats while maintaining a threshold relationship between BG and UGE with virtually no UGE observed when BG was below RTG. Canagliflozin dose-dependently decreased BG concentrations in db/db mice treated acutely. In ZDF rats treated for 4 weeks, canagliflozin decreased glycated hemoglobin (HbA1c) and improved measures of insulin secretion. In obese animal models, canagliflozin increased UGE and decreased BG, body weight gain, epididymal fat, liver weight, and the respiratory exchange ratio

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
    corecore