69 research outputs found

    A common source for the destructive earthquakes in the volcanic island of Ischia (Southern Italy): insights from historical and recent seismicity

    Get PDF
    AbstractThe island of Ischia, located in the Gulf of Naples, represents an unusual case of resurgent caldera where small-to-moderate magnitude volcano-tectonic earthquakes generate large damage and catastrophic effects, as in the case of 4 March 1881 (Imax-VIII-IXMCS) and 28 July 1883 (Imax X-XI MCS) historical earthquakes, and of the recent 21 August 2017 MW = 3.9, event. All these earthquakes struck the northern area of the island. With about 65,000 inhabitants, Ischia is a popular touristic destination for thermals baths, hosting more than 3,000,000 visitors per year, thus representing a high seismic risk area. Assessing its seismic potential appears a fundamental goal and, to this end, the estimate of the magnitude of significant historical events and the characterization of their source are crucial. We report here a reassessment of historical data of damage of 1881 and 1883 earthquakes to evaluate the main source parameters of these events (obtained with the BOXER and EXISM software) and quantitatively compare, for the first time, the results with the source characteristics, obtained from instrumental data, of the recent 2017 earthquake. The results allowed us to assess the location, as well as the possible dimension and the related maximum magnitude, of the seismogenic structure responsible for such damaging earthquakes. Our results also provide an additional framework to define the mechanisms leading to earthquakes associated with the dynamics of calderas

    Using ground motion prediction equations to monitor variations in quality factor due to induced seismicity: a feasibility study

    Get PDF
    Sub-surface operations for energy production such as gas storage, fluid reinjection or hydraulic fracking may modify the physical properties of the rocks, in particular the seismic velocity and the anelastic attenuation. The aim of the present study is to investigate, through a synthetic test, the possibility of using empirical ground-motion prediction equations (GMPEs) to observe the variations in the reservoir. In the synthetic test, we reproduce the expected seismic activity (in terms of rate, focal mechanisms, stress drop and the b value of the Gutenberg-Richter) and the variation of medium properties in terms of the quality factor Q induced by a fluid injection experiment. In practice, peak-ground velocity data of the simulated earthquakes during the field operations are used to update the coefficients of a reference GMPE in order to test whether the coefficients are able to capture the medium properties variation. The results of the test show that the coefficients of the GMPE vary during the simulated field operations revealing their sensitivity to the variation of the anelastic attenuation. The proposed approach is suggested as a promising tool that, if confirmed by real data analysis, could be used for monitoring and interpreting induced seismicity in addition to more conventional techniques

    Subduction age and stress state control on seismicity in the NW Pacific subducting plate

    Get PDF
    Intermediate depth (70-300 km) and deep (> 300 km) earthquakes have always been puzzling Earth scientists: their occurrence is a paradox, since the ductile behavior of rocks and the high confining pressure with increasing depths would theoretically preclude brittle failure and frictional sliding. The mechanisms proposed to explain deep earthquakes, mainly depending on the subducting plate age and stress state, are generally expressed by single parameters, unsuitable to comprehensively account for differences among distinct subduction zones or within the same slab. We analyze the Kurile and Izu-Bonin intraslab seismicity and detail the Gutenberg-Richter b-value along the subducted planes, interpreting its variation in terms of stress state, analogously to what usually done for shallow earthquakes. We demonstrate that, despite the slabs different properties (e.g., lithospheric age, stress state, dehydration rate), in both cases deep earthquakes are restricted to depths characterized by equal age from subduction initiation and are driven by stress regimes affected by the persistence of the metastable olivine wedge

    Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying

    Get PDF
    AbstractEarthquake occurrence is ultimately controlled by tectonic stress load. Nevertheless, the 2019, Mw = 4.9, Le Teil earthquake in southern France occurred in an area where strain rates are relatively low. Human operations can produce increases in stress load and degradation of strength on nearby active faults, which raises the potential for failure. Here we present estimates of the rupture geometry and source directivity of the Le Teil earthquake based on differential synthetic aperture radar interferometry and seismic data. We find that almost two centuries of mass removal at a nearby cement quarry likely provided the required stress change to hasten the occurrence of the Le Teil earthquake by more than 18,000 years. We suggest that further mass removal in the area might lead to even stronger earthquakes, by activating deeper sectors of the same fault plane

    Ground motion scenarios for the 1997 colfiorito, central Italy earthquake

    Get PDF
    In this paper we report the results of several investigations aimed at evaluating ground motion scenarios for the September 26th, 1997 Colfiorito earthquake (Mw 6.0, 09:40 UTC). We model the observed variability of ground motions through synthetic scenarios which simulate an earthquake rupture propagating at constant rupture velocity (2.7 km/s) and the inferred directivity. We discuss the variability of kinematic source parameters, such as the nucleation position and the rupture velocity, and how it influences the predicted ground motions and it does not account for the total standard deviation of the empirical predictive model valid for the region. Finally, we used the results from the scenario studies for the Colfiorito earthquake to integrate the probabilistic and deterministic approaches for seismic hazard assessment

    Comment on “The 21 August 2017 M d 4.0 Casamicciola Earthquake: First Evidence of Coseismic Normal Surface Faulting at the Ischia Volcanic Island” by

    Get PDF
    We are writing this comment because many aspects of the analysis presented by Nappi et al. (2018) are debatable. In particular, a major issue is relevant to the conclusion suggested by Nappi et al. (2018) about a seismogenic normal fault with northward dip. This finding is not well‐founded because the authors do not really present a causative source model. In addition, their statement is clearly not consistent with the Differential Interferometric Synthetic Aperture Radar (DInSAR), Global Positioning System (GPS) and seismological measurements presented in the article previously published by De Novellis et al. (2018). Moreover, we also report an evident error in the geologic map proposed by Nappi et al. (2018, their fig. 3).Published313-3156V. Pericolosità vulcanica e contributi alla stima del rischioJCR Journa

    The 21 August 2017 Ischia (Italy) Earthquake Source Model Inferred From Seismological, GPS, and DInSAR Measurements

    Get PDF
    The causative source of the first damaging earthquake instrumentally recorded in the Island of Ischia, occurred on 21 August 2017, has been studied through a multiparametric geophysical approach. In order to investigate the source geometry and kinematics we exploit seismological, Global Positioning System, and Sentinel-1 and COSMO-SkyMed differential interferometric synthetic aperture radar coseismic measurements. Our results indicate that the retrieved solutions from the geodetic data modeling and the seismological data are plausible; in particular, the best fit solution consists of an E-W striking, south dipping normal fault, with its center located at a depth of 800 m. Moreover, the retrieved causative fault is consistent with the rheological stratification of the crust in this zone. This study allows us to improve the knowledge of the volcano-tectonic processes occurring on the Island, which is crucial for a better assessment of the seismic risk in the area.Published2193-22023T. Sorgente sismicaJCR Journa
    corecore