51 research outputs found

    Sympathetic Activation and Baroreflex Function during Intradialytic Hypertensive Episodes

    Get PDF
    BACKGROUND: The mechanisms of intradialytic increases in blood pressure are not well defined. The present study was undertaken to assess the role of autonomic nervous system activation during intradialytic hypertensive episodes. METHODOLOGY/PRINCIPAL FINDINGS: Continuous interbeat intervals (IBI) and systolic blood pressure (SBP) were monitored during hemodialysis in 108 chronic patients. Intradialytic hypertensive episodes defined as a period of at least 10 mmHg increase in SBP between the beginning and the end of a dialysis session or hypertension resistant to ultrafiltration occurring during or immediately after the dialysis procedure, were detected in 62 out of 113 hemodialysis sessions. SBP variability, IBI variability and baroreceptor sensitivity (BRS) in the low (LF) and high (HF) frequency ranges were assessed using the complex demodulation technique (CDM). Intradialytic hypertensive episodes were associated with an increased (n = 45) or decreased (n = 17) heart rate. The maximal blood pressure was similar in both groups. In patients with increased heart rate the increase in blood pressure was associated with marked increases in SBP and IBI variability, with suppressed BRS indices and enhanced sympatho-vagal balance. In contrast, in those with decreased heart rate, there were no significant changes in the above parameters. End-of-dialysis blood pressure in all sessions associated with hypertensive episode was significantly higher than in those without such episodes. In logistic regression analysis, predialysis BRS in the low frequency range was found to be the main predictor of intradialytic hypertension. CONCLUSION/SIGNIFICANCE: Our data point to sympathetic overactivity with feed-forward blood pressure enhancement as an important mechanism of intradialytic hypertension in a significant proportion of patients. The triggers of increased sympathetic activity during hemodialysis remain to be determined. Intradialytic hypertensive episodes are associated with higher end-of-dialysis blood pressure, suggesting that intradialytic hypertension may play a role in generation of interdialytic hypertension

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Get PDF
    The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c2. The most stringent limit is set for spin-independent scattering at 36 GeV/c2, rejecting cross sections above 9.2×10-48 cm at the 90% confidence level

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double β decays of Xe 134

    Get PDF
    The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double β decay of Xe134 is presented. LZ is a 10-tonne xenon time-projection chamber optimized for the detection of dark matter particles and is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double β decay of Xe134, for which xenon detectors enriched in Xe136 are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7×1024 years at 90% confidence level (CL) and has a three-sigma observation potential of 8.7×1023 years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3×1024 years at 90% CL

    Cosmogenic production of {37}^Ar in the context of the LUX-ZEPLIN experiment

    Get PDF
    We estimate the amount of {37}^Ar produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting {37}^Ar concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of {37}^Ar in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average {37}^Ar activity after 10 tons are purified and transported underground is 0.058 - 0.090 μ Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic {37}^Ar will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of {37}^Ar should be considered when planning for future liquid-xenon-based experiments

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double beta decays of Xe-134

    Get PDF

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Projected sensitivities of the LUX-ZEPLIN (LZ) experiment to new physics via low-energy electron recoils

    Get PDF

    Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of 134Xe

    Get PDF

    Cosmogenic production of 37Ar in the context of the LUX-ZEPLIN experiment

    Get PDF
    We estimate the amount of 37Ar produced in natural xenon via cosmic ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting 37Ar concentration in a 10-tonne payload~(similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea level production rate of 37Ar in natural xenon is estimated to be 0.024~atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1~tonne/month, the average 37Ar activity after 10~tonnes are purified and transported underground is 0.058--0.090~μBq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic 37Ar will appear as a noticeable background in the early science data, while decaying with a 35~day half-life. This newly-noticed production mechanism of 37Ar should be considered when planning for future liquid xenon-based experiments
    corecore