5 research outputs found

    Extension of ELM suppression window using n=4 RMPs in EAST

    Full text link
    The q95 window for Type-I Edge Localized Modes (ELMs) suppression using n=4 even parity Resonant Magnetic Perturbations (RMPs) has been significantly expanded to a range from 3.9 to 4.8, which is demonstrated to be reliable and repeatable in EAST over the last two years. This window is significantly wider than the previous one, which is around q95=3.7pm0.1, and is achieved using n=4 odd parity RMPs. Here, n represents the toroidal mode number of the applied RMPs and q95 is the safety factor at the 95% normalized poloidal magnetic flux. During ELM suppression, there is only a slight drop in the stored energy (<=10%). The comparison of pedestal density profiles suggests that ELM suppression is achieved when the pedestal gradient is kept lower than a threshold. This wide q95 window for ELM suppression is consistent with the prediction made by MARS-F modeling prior to the experiment, in which it is located at one of the resonant q95 windows for plasma response. The Chirikov parameter taking into account plasma response near the pedestal top, which measures the plasma edge stochasticity, significantly increases when q95 exceeds 4, mainly due to denser neighboring rational surfaces. Modeling of plasma response by the MARS-F code shows a strong coupling between resonant and non-resonant components across the pedestal region, which is characteristic of the kink-peeling like response observed during RMP-ELM suppression in previous studies on EAST. These promising results show the reliability of ELM suppression using the n=4 RMPs and expand the physical understanding on ELM suppression mechanism.Comment: 25 pages, 11 figure

    First demonstration of full ELM suppression in low input torque plasmas to support ITER research plan using n = 4 RMP in EAST

    No full text
    Full suppression of type-I edge localized modes (ELMs) using n = 4 resonant magnetic perturbations (RMPs) as planned for ITER has been demonstrated for the first time (n is the toroidal mode number of the applied RMP). This is achieved in EAST plasmas with low input torque and tungsten divertor, and the target plasma for these experiments in EAST is chosen to be relevant to the ITER Q = 10 operational scenario, thus also addressing significant scenario issues for ITER. In these experiments the lowest neutral beam injection (NBI) input torque is around TNBI ∼ 0.44 Nm, which extrapolates to around 14 Nm in ITER (compared to a total torque input of 35 Nm when 33 MW of NBI are used for heating). The q95 is around 3.6 and normalized plasma beta βN ∼ 1.5–1.8, similar to that in the ITER Q = 10 scenario. Suppression windows in both q95 and plasma density are observed; in addition, lower plasma rotation is found to be favourabe to access ELM suppression. ELM suppression is maintained with line averaged density up to 60%nGW (Greenwald density limit) by feedforward gas fuelling after suppression is achieved. It is interesting to note that in addition to an upper density, a low density threshold for ELM suppression of 40%nGW is also observed. In these conditions energy confinement does not significantly drop (<10%) during ELM suppression when compared to the ELMy H-mode conditions, which is much better than previous results using low n (n = 1 and 2) RMPs in higher q95 regimes. In addition, the core plasma tungsten concentration is clearly reduced during ELM suppression demonstrating an effective impurity exhaust. MHD response modelling using the MARS-F code shows that edge magnetic field stochasticity has a peak at q95 ∼ 3.65 for the odd parity configuration, which is consistent to the observed suppression window around 3.6–3.75. These results expand the physical understanding of ELM suppression and demonstrate the effectiveness of n = 4 RMPs for reliable control ELMs in future ITER high Q plasma scenarios with minimum detrimental effects on plasma confinement

    ICRF wall conditioning: present status and developments for future superconducting fusion machines

    Get PDF
    ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density (similar to 10(17) m(-3)) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected "marker" masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from I-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna
    corecore