13,735 research outputs found

    Mass dependence of vector meson photoproduction off protons and nuclei within the energy-dependent hot-spot model

    Full text link
    We study the photoproduction of vector mesons off proton and off nuclear targets. We work within the colour dipole model in an approach that includes subnucleon degrees of freedom, so-called hot spots, whose positions in the impact-parameter plane change event-by-event. The key feature of our model is that the number of hot spots depends on the energy of the photon--target interaction. Predictions are presented for exclusive and dissociative production of ρ0\rho^{0}, J/ψ\mathrm{J/}\psi, and Υ(1S)\Upsilon(1S) off protons, as well as for coherent and incoherent photoproduction of ρ0\rho^{0} off nuclear targets, where Xe, Au, and Pb nuclei are considered. We find that the mass dependence of dissociative production off protons as a function of the energy of the interaction provides a further handle to search for saturation effects at HERA, the LHC and future colliders. We also find that the coherent photonuclear production of ρ0\rho^{0} is sensitive to fluctuations in the subnucleon degrees of freedom at RHIC and LHC energies.Comment: 19 pages, 4 figures. Typo in legend of figs. 1 and 2 correcte

    Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids

    Get PDF
    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics

    Black hole shadow of a rotating polytropic black hole by the Newman--Janis algorithm without complexification

    Full text link
    In this work, starting from a spherically symmetric polytropic black hole, a rotating solution is obtained by following the Newman--Janis algorithm without complexification. Besides studying the horizon, the static conditions and causality issues of the rotating solution, we obtain and discuss the shape of its shadow. Some other physical features as the Hawking temperature and emission rate of the rotating polytropic black hole solution are also discussed.Comment: 9 pages, 2 figures, some references adde

    Radiative non-isothermal Bondi accretion onto a massive black hole

    Full text link
    In this paper, we present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disk as the emitter of UV photons and a spherical central object as a source of X-ray emission. In the present analysis, the UV emission from the accretion disk is assumed to have an angular dependence, while the X-ray/central object radiation is assumed to be isotropic. This allows us to build streamlines in any angular direction we need to. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition resembles from pure type 1 & 2 to type 5 solutions (see Fig2.1 of Frank etal. 2002), which takes place regardless of whether or not the UV emission dominates over the X-ray emission. We compute the radiative factors at which this transition occurs, and discard type 5 solution from all our models. Estimated values of the accretion radius and accretion rate in terms of the classical Bondi values are also given. The results are useful for the construction of proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBH at the centre of galaxies.Comment: 10 pages, 10 figures, Accepted to be published in A&

    Variable stars in the globular cluster M28 (NGC 6626)

    Full text link
    We present a new search for variable stars in the Galactic globular cluster M28 (NGC 6626). The search is based on a series of BVI images obtained with the SMARTS Consortium's 1.3m telescope at Cerro Tololo Inter-American Observatory, Chile. The search was carried out using the ISIS v2.2 image subtraction package. We find a total of 25 variable stars in the field of the cluster, 9 being new discoveries. Of the newly found variables, 1 is an ab-type RR Lyrae star, 6 are c-type RR Lyrae, and 2 are long-period/semi-regular variables. V22, previously classified as a type II Cepheid, appears as a bona-fide RRc in our data. In turn, V20, previously classified as an ab-type RR Lyrae, could not be properly phased with any reasonable period. The properties of the ab-type RR Lyrae stars in M28 appear most consistent with an Oosterhoff-intermediate classification, which is unusual for bona-fide Galactic globulars clusters. However, the cluster's c-type variables do not clearly support such an Oosterhoff type, and a hybrid Oosterhoff I/II system is accordingly another possibility, thus raising the intriguing possibility of multiple populations being present in M28. Coordinates, periods, and light curves in differential fluxes are provided for all the detected variables.Comment: A&A, in pres
    corecore