270 research outputs found

    High-Quality Planar high-Tc Josephson Junctions

    Full text link
    Reproducible high-Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 ?m wide) is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7-? film through a gold mask such as the non-protected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits.Comment: 4 pages, 5 figures, to be published in Applied Physics Letter

    Study and optimization of ion-irradiated High-Tc Josephson nanoJunctions by Monte Carlo simulations

    Full text link
    High Tc Josephson nanoJunctions (HTc JnJ) made by ion irradiation have remarkable properties for technological applications. However, the spread in their electrical characteristics increases with the ion dose. We present a simple model to explain the JnJ inhomogeneities, which accounts quantitatively for experimental data. The spread in the slit's width of the irradiation mask is the limiting factor.Monte Carlo simulations have been performed using different irradiation conditions to study their influence on the spread of the JnJ charcateristics. A "universal" behavior has been evidenced, which allows to propose new strategies to optimize JnJ reproducibility.Comment: 14 pages, 6 Figures. accepted in Journal of Applied Physic

    Spin-polarized tunneling spectroscopy in tunnel junctions with half-metallic electrodes

    Full text link
    We have studied the magnetoresistance (TMR) of tunnel junctions with electrodes of La2/3Sr1/3MnO3 and we show how the variation of the conductance and TMR with the bias voltage can be exploited to obtain a precise information on the spin and energy dependence of the density of states. Our analysis leads to a quantitative description of the band structure of La2/3Sr1/3MnO3 and allows the determination of the gap delta between the Fermi level and the bottom of the t2g minority spin band, in good agreement with data from spin-polarized inverse photoemission experiments. This shows the potential of magnetic tunnel junctions with half-metallic electrodes for spin-resolved spectroscopic studies.Comment: To appear in Physical Review Letter

    Transport properties of ybco thin films near the critical state with no applied field

    Full text link
    Transport measurements carried out on twinned ybco films are compared to the predictions of a previously proposed model suggesting that the vortices move along the films twin boundaries that behave as rows of Josephson weak links [P.Bernstein and J.F.Hamet, J.Appl.Phys.95 (2004) 2569]. The obtained results suggest that, except if the films are very thin, the twin boundaries consist of superimposed rows of weak links with mean height,ds, whose mean length along the TBs is an universal function of T/Tc, the reduced temperature. This conclusion yields a general expression for the critical surface current density of the films as a function of T/Tc and of the number of superimposed weak links rows, while the critical current density depends on ds. A comparison of the measurements reported by various authors shows that the nature of the substrate and the growth technique have both a strong effect on ds . The existence of superimposed weak links rows is attributed to extended defects generated by y2o3 inclusions.Comment: 33 pages, 13 figures; accepted for publication in Physica

    Phase Separation and the Phase Diagram in Cuprates Superconductors

    Full text link
    We show that the main features of the cuprates superconductors phase diagram can be derived considering the disorder as a key property of these materials. Our basic point is that the high pseudogap line is an onset of phase separation which generates compounds made up of regions with distinct doping levels. We calculate how this continuous temperature dependent phase separation process occurs in high critical temperature superconductors (HTSC) using the Cahn-Hilliard approach, originally applied to study alloys. Since the level of phase separation varies for different cuprates, it is possible that different systems with average doping level pm exhibit different degrees of charge and spin segregation. Calculations on inhomogeneous charge distributions in form of stripes in finite clusters performed by the Bogoliubov-deGennes superconducting approach yield good agreement to the pseudogap temperature T*(pm), the onset of local pairing amplitudes with phase locked and concomitantly, how they develop at low temperatures into the superconducting phase at Tc(pm) by percolation.Comment: 9 pages, 9 figures. Submitted to Phys. Rev.

    Co-doped (La,Sr)TiO3-d: a high-Curie temperature diluted magnetic system with large spin-polarization

    Get PDF
    We report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La,Sr)TiO3-d (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS. Our results argue for the DMOS approach with complex oxide materials in spintronics

    High Tc Josephson nanoJunctions made by ion irradiation : characteristics and reproducibility

    Full text link
    Reproducible High Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge 1 to 5 micrometers wide is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7 film through a gold mask such as the unprotected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower dose through a 20 nm wide narrow slit opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. Non hysteretic Resistively Shunted Junction (RSJ) like behavior is observed, together with sinc Fraunhofer patterns for rectangular junctions. The IcRn product varies with temperature ; it can reach a few mV. The typical resistance ranges from 0.1 to a few ohms, and the critical current density can be as high as 30 kA/cm2. The dispersion in characteristics is very low, in the 5% to 10% range. Such nanojunctions have been used to make microSQUIDs (Superconducting Quantum Interference Device) operating at Liquid Nitrogen (LN2) temperature. They exhibit a very small asymmetry, a good sensitivity and a rather low noise. The process is easily scalable to make rather complex Josephson circuits.Comment: 4 pages, 5 figures, Applied Superconductivity Conference Seattle 200

    Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments

    Full text link
    We have performed magnetotransport measurements on La2/3Sr1/3MnO3 / SrTiO3 / La2/3Sr1/3MnO3 magnetic tunnel junctions. A magnetoresistance ratio of more than 1800 % is obtained at 4K, from which we infer an electrode spin polarization of at least 95 %. This result strongly underscores the half-metallic nature of mixed-valence manganites and demonstrates its capability as a spin analyzer. The magnetoresistance extends up to temperatures of more than 270K. We argue that these improvements over most previous works may result from optimizing the patterning process for oxide heterostructures.Comment: to appear in Applied Physics Letter

    Full oxide heterostructure combining a high-Tc diluted ferromagnet with a high-mobility conductor

    Full text link
    We report on the growth of heterostructures composed of layers of the high-Curie temperature ferromagnet Co-doped (La,Sr)TiO3 (Co-LSTO) with high-mobility SrTiO3 (STO) substrates processed at low oxygen pressure. While perpendicular spin-dependent transport measurements in STO//Co-LSTO/LAO/Co tunnel junctions demonstrate the existence of a large spin polarization in Co-LSTO, planar magnetotransport experiments on STO//Co-LSTO samples evidence electronic mobilities as high as 10000 cm2/Vs at T = 10 K. At high enough applied fields and low enough temperatures (H < 60 kOe, T < 4 K) Shubnikov-de Haas oscillations are also observed. We present an extensive analysis of these quantum oscillations and relate them with the electronic properties of STO, for which we find large scattering rates up to ~ 10 ps. Thus, this work opens up the possibility to inject a spin-polarized current from a high-Curie temperature diluted oxide into an isostructural system with high-mobility and a large spin diffusion length.Comment: to appear in Phys. Rev.
    • …
    corecore