2,526 research outputs found

    Solid Oxide Fuel Cells: Numerical and Experimental Approaches

    Get PDF
    Solid oxide fuel cell (SOFC) is a promising electrochemical technology that can produce electrical and thermal power with outstanding efficiencies. A systematic synergetic approach between experimental measurements and modelling theory has proved to be instrumental to evaluate performance and correct behaviour of a chemical process, like the ones occurring in SOFC. For this purpose, starting from SIMFC (SIMulation of Fuel Cells) code set-up by PERT-UNIGE (Process Engineering Research Group) for Molten Carbonate Fuel Cells [1], a new code has been set-up for SOFCs based on local mass, energy, charge and momentum balances. This code takes into account the proper reactions occurring in the SOFC as well as new geometries and kinetics thanks to experiments carried out on single cells and stack in ENEA laboratories of C.R. Casaccia and VTT Fuel Cell Lab in Finland. In particular using an innovative experimental setup it has been possible to study experimentally the influence of a multicomponent mixtures on the performance of SOFC and also validate locally a 2-D model developed starting from SIMFC code. The results obtained are good, showing a good agreement between experimental and numerical results. The obtained results are encouraging further studies which allow the model validation on a greater quantity of data and under a wider range of operating conditions

    Risk factors associated with the occurrence of autoimmune diseases in adult coeliac patients

    Get PDF
    Objectives. Autoimmune diseases (AD) may be associated with coeliac disease (CD), but specific risk factors have been poorly investigated. The aim of this study was to assess the spectrum of AD and its specific risk factors associated in a series of adult coeliac patients. Materials and Methods. We performed a single-center case-control study including adult newly diagnosed CD patients. To evaluate the risk factors of the association between AD and CD, 341 coeliac patients included were categorized on the basis of AD presence: 91 cases with at least one AD and 250 controls without AD were compared for clinical, serological, and histological features. Eighty-seven cases were age-gender-matched with 87 controls. Results. Among 341 CD patients, 26.6% of CD patients had at least one AD. Endocrine and dermatological diseases were the most prevalent AD encountered: autoimmune thyroiditis was present in 48.4% of cases, psoriasis in 17.6%, and type I diabetes and dermatitis herpetiformis in 11%, respectively. At logistic regression, factors associated with AD were a positive 1st-degree family history of AD (OR 3.7, 95% CI 1.93–7), a body mass index ≥ 25 kg/m2 at CD diagnosis (OR 2.95%, CI 1.1–3.8), and long standing presentation signs/symptoms before CD diagnosis (>10 years) (OR 2.1, 95% CI 1.1–3.7). Analysis on age-gender-matched patients confirmed these results. Conclusions. CD patients with family history of AD, overweight at CD diagnosis, and a delay of CD diagnosis had an increased risk of having another AD. The benefit of CD screening in these specific subsets of patients with AD awaits further investigation

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    The role of the RPL routing protocol for smart grid communications

    Get PDF
    Advanced communication/networking technologies should be integrated in next-generation power systems (a.k.a. smart grids) to improve their resilience, efficiency, adaptability, and sustainability. Many believe that the smart grid communication infrastructure will emerge from the interconnection of a large number of small-scale networks organized into a hierarchical architecture covering larger geographic areas. In this article, first we carry out a thorough analysis of the key components of the smart grid communication architecture, discussing the different network topologies and communication technologies that could be employed. Special emphasis is given to the advanced metering infrastructure, which will be used to interconnect the smart meters deployed at customers\u27 premises with data aggregators and control centers. The design of scalable, reliable, and efficient networking solutions for AMI systems is an important research problem because these networks are composed of thousands of resource-constrained embedded devices usually interconnected with communication technologies that can provide only low-bandwidth and unreliable links. The IPv6 Routing Protocol for Low Power and Lossy Networks was recently standardized by the IETF to specifically meet the requirements of typical AMI applications. In this article we present a thorough overview of the protocol, and we critically analyze its advantages and potential limits in AMI applications. We also conduct a performance evaluation of RPL using a Contiki-based prototype of the RPL standard and a network emulator. Our results indicate that although average performance may appear reasonable for AMI networks, a few RPL nodes may suffer from severe unreliability issues and experience high packet loss rates due to the selection of suboptimal paths with highly unreliable links

    Optimization of Efficiency and Energy Consumption in p-persistent CSMA-based Wireless LANs

    Get PDF
    Wireless technologies in the LAN environment are becoming increasingly important. The IEEE 802.11 is the most mature technology for Wireless Local Area Networks (WLANs). The limited bandwidth and the finite battery power of mobile computers represent one of the greatest limitations of current WLANs. In this paper we deeply investigate the efficiency and the energy consumption of MAC protocols that can be described with a p-persistent CSMA model. As already shown in the literature, the IEEE 802.11 protocol performance can be studied using a p-persistent CSMA model [Cal00]. For this class of protocols, in the paper we define an analytical framework to study the theoretical performance bounds from the throughput and the energy consumption standpoint. Specifically, we derive the p values (i.e., the average size of the contention window in the IEEE 802.11 protocol) that maximizes the throughput, poptCp^C_{opt}, and minimizes the energy consumption, poptEp^E_{opt}. By providing analytical closed formulas for the optimal values, we discuss the trade-off between efficiency and energy consumption. Specifically, we show that power saving and throughput maximization can be jointly achieved. Our analytical formulas indicate that the optimal pp values depend on the network configuration, i.e., number of active stations and length of the messages transmitted on the channel

    Mucosa-Environment Interactions in the Pathogenesis of Rheumatoid Arthritis

    Get PDF
    Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa environment interaction

    Traffic integration in personal, local and geograhical wireless networks

    Get PDF
    Currently, users identify wireless networks with the first and second generation of cellular-telephony networks. Although voice and short messaging have driven the success of these networks so far, data and more sophisticated applications are emerging as the future driving forces for the extensive deployment of new wireless technologies. In this chapter we will consider future wireless technologies that will provide support to different types of traffic including legacy voice applications, Internet data traffic, and sophisticated multimedia applications. In the near future, wireless technologies will span from broadband wide-area technologies (such as satellite-based network and cellular networks) to local and personal area networks. Hereafter, for each class of networks, we will present the emerging wireless technologies for supporting service integration. Our overview will start by analyzing the Bluetooth technology that is the de-facto standard for Wireless Personal Area Networks (WPANs), i.e. networks that connect devices placed inside a circle with radius of 10 meters. Two main standards exist for Wireless Local Area Networks (WLANs): IEEE 802. and HiperLAN. In this chapter we focus on the IEEE 802.11 technology, as it is the technology currently available on the market. In this chapter, after a brief description of the IEEE 802.11 architecture, we will focus on the mechanisms that have been specifically designed to support delay sensitive traffics
    • …
    corecore