338 research outputs found

    A simple and low-power optical limiter for multi-GHz pulse trains

    Get PDF
    We study the limiting-amplification capability of a saturated Semiconductor Optical Amplifier (SOA) followed by an optical band-pass filter. We experimentally demonstrate that this simple optical circuit can be effectively exploited to realize a low-power optical limiter for amplitude-modulated pulse trains at multi-GHz repetition rate. We report very large amplitude-modulation-reduction factors for the case of 20 and 40 GHz pulse trains that are super-imposed with modulating frequencies ranging from 100kHz to several GHz. (C) 2007 Optical Society of America

    Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat.

    Get PDF
    The diffusible messenger, nitric oxide plays multiple roles in neuroprotection, neurodegeneration and brain plasticity. Its involvement in neurogenesis has been disputed, on the basis of results on models in vivo and in culture. We report here that pharmacological blockade of nitric oxide production in rat pups resulted, during a restricted time window of the first three postnatal days, in increased cerebellar proliferation rate, as assessed through tritiated thymidine or BrdU incorporation into DNA. This was accompanied by increased expression of Myc, a transcription factor essential for cerebellar development, and of the cell cycle regulating gene, cyclin D1. These effects were mediated downstream by the nitric oxide-dependent second messenger, cGMP. Schedules of pharmacological NO deprivation targeted to later developmental stages (from postnatal day 3 to 7), no longer increased proliferation, probably because of partial escape of the cGMP level from nitric oxide control. Though limited to a brief temporal window, the proliferative effect of neonatal nitric oxide deprivation could be traced into adulthood. Indeed, the number of BrdU-labeled surviving cells, most of which were of neuronal phenotype, was larger in the cerebellum of 60-day-old rats that had been subjected to NO deprivation during the first three postnatal days than in control rats. Experiments on cell cultures from neonatal cerebellum confirmed that nitric oxide deprivation stimulated proliferation of cerebellar precursor cells and that this effect was not additive with the proliferative action of sonic hedgehog peptide. The finding that nitric oxide deprivation during early cerebellar neurogenesis, stimulates a brief increase in cell proliferation may contribute to a better understanding of the controversial role of nitric oxide in brain development

    A simple and low-power optical limiter for multi-GHz pulse trains

    Get PDF
    We study the limiting-amplification capability of a saturated Semiconductor Optical Amplifier (SOA) followed by an optical band-pass filter. We experimentally demonstrate that this simple optical circuit can be effectively exploited to realize a low-power optical limiter for amplitudemodulated pulse trains at multi-GHz repetition rate. We report very large amplitude-modulation-reduction factors for the case of 20 and 40 GHz pulse trains that are super-imposed with modulating frequencies ranging from 100 kHz to several GHz

    "WDM-DPSK Detection by means of Frequency-Periodic Gaussian Filtering"

    Get PDF
    A single frequency-periodic narrow filter converts DPSK to intensity modulation in a high number of WDM channels. It also strongly enhances their tolerance to chromatic dispersion and is exploited in a 16x10 Gbit/s transmission over 240 km G.652 fibre with no chromatic dispersion compensation

    The multifaceted role of vitamin b6 in cancer: drosophila as a model system to investigate dna damage

    Get PDF
    A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity

    All-optical self-routing of 40 Gb/s DPSK packets

    Get PDF
    We demonstrate a self-routing all-optical circuit for switching 40 Gb/s DPSK packets. In our scheme, an all-optical header processor feeds a set-reset flip-flop that drives a coherent wavelength converter. We report an overall limited power penalty

    Molecular characterization of pyridoxine 5′-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy

    Get PDF
    Defects of vitamin B6 metabolism are responsible for severe neurological disorders, such as pyridoxamine 5′-phosphate oxidase deficiency (PNPOD; OMIM: 610090), an autosomal recessive inborn error of metabolism that usually manifests with neonatal-onset severe seizures and subsequent encephalopathy. At present, 27 pathogenic mutations of the gene encoding human PNPO are known, 13 of which are homozygous missense mutations; however, only 3 of them have been characterised with respect to the molecular and functional properties of the variant enzyme forms. Moreover, studies on wild type and variant human PNPOs have so far largely ignored the regulation properties of this enzyme. Here, we present a detailed characterisation of the inhibition mechanism of PNPO by pyridoxal 5′-phosphate (PLP), the reaction product of the enzyme. Our study reveals that human PNPO has an allosteric PLP binding site that plays a crucial role in the enzyme regulation and therefore in the regulation of vitamin B6 metabolism in humans. Furthermore, we have produced, recombinantly expressed and characterised several PNPO pathogenic variants responsible for PNPOD (G118R, R141C, R225H, R116Q/R225H, and X262Q). Such replacements mainly affect the catalytic activity of PNPO and binding of the enzyme substrate and FMN cofactor, leaving the allosteric properties unaltered

    Integrated optical frequency comb for 5G NR Xhauls

    Get PDF
    : We experimentally demonstrate the use of optical frequency combs (OFCs), generated by a photonic integrated circuit (PIC), in a flexible optical distribution network based on fiber-optics and free-space optics (FSOs) links, aimed at the fifth generation of mobile network (5G) Xhauls. The Indium Phosphide (InP) monolithically integrated OFC is based on cascaded optical modulators and is broadly tunable in terms of operating wavelength and frequency spacing. Particularly, our approach relies on applying the PIC in a centralized radio access network (C-RAN) architecture, with the purpose of optically generating two low-phase noise mm-waves signals for simultaneously enabling a 12.5-km of single-mode fiber (SMF) fronthaul and a 12.5-km SMF midhaul, followed by a 10-m long FSO fronthaul link. Moreover, the demonstrator contemplates two 10-m reach 5G wireless access networks operating in the 26 GHz band, i.e. over the frequency range 2 (FR2) from the 5G NR standard. The proposed integrated OFC-based 5G system performance is in accordance to the 3rd Generation Partnership Project (3GPP) Release 15 requirements, achieving a total wireless throughput of 900 Mbit/s

    Lifecycle environmental impact assessment of an overtopping wave energy converter embedded in breakwater systems

    Get PDF
    Overtopping breakwater systems are among the most promising technologies for exploiting wave energy to generate electricity. They consist in water reservoirs, embedded in piers, placed on top of ramps, higher than sea-level. Pushed by wave energy, seawater fills up the reservoirs and produces electricity by flowing back down through low headhydro turbines. Different overtopping breakwater systems have been tested worldwide in recent years. This study focuses on the Overtopping BReakwater for Energy Conversion (OBREC) system that has been implemented and tested in the harbor of Naples (Italy). The Life Cycle Assessment of a single replicable module of OBREC has been performed for analyzing potential environmental impacts, in terms of Greenhouse Gas Emissions, considering construction, installation, maintenance, and the operational phases. The Carbon Footprint (i.e., mass of CO2eq) to build wave energy converters integrated in breakwater systems has been estimated, more specifically the "environmental investment" (i.e., the share of Carbon Footprint due to the integration of wave energy converter) needed to generate renewable electricity has been assessed. The Carbon Intensity of Electricity (i.e., the ratio between the CO2eq emitted and the electricity produced) has been then assessed in order to demonstrate the profitability and the opportunity to foster innovation in the field of blue energy. Considering the impact for implementing an operational OBREC module (Carbon Footprint = 1.08 t CO2eq; Environmental Investment = 0.48 t CO2eq) and the electricity production (12.6 MWh/year per module), environmental benefits (avoided emissions) would compensate environmental costs (i.e., Carbon Footprint; Environmental Investment) those provided within a range of 25 and 13 months respectively
    • …
    corecore