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Overtopping breakwater systems are among the most promising technologies for

exploiting wave energy to generate electricity. They consist in water reservoirs,

embedded in piers, placed on top of ramps, higher than sea-level. Pushed by wave

energy, seawater fills up the reservoirs and produces electricity by flowing back down

through low headhydro turbines. Different overtopping breakwater systems have been

tested worldwide in recent years. This study focuses on the Overtopping BReakwater

for Energy Conversion (OBREC) system that has been implemented and tested in the

harbor of Naples (Italy). The Life Cycle Assessment of a single replicable module of

OBREC has been performed for analyzing potential environmental impacts, in terms of

Greenhouse Gas Emissions, considering construction, installation, maintenance, and the

operational phases. The Carbon Footprint (i.e., mass of CO2eq) to build wave energy

converters integrated in breakwater systems has been estimated, more specifically the

“environmental investment” (i.e., the share of Carbon Footprint due to the integration of

wave energy converter) needed to generate renewable electricity has been assessed.

The Carbon Intensity of Electricity (i.e., the ratio between the CO2eq emitted and the

electricity produced) has been then assessed in order to demonstrate the profitability

and the opportunity to foster innovation in the field of blue energy. Considering the

impact for implementing an operational OBREC module (Carbon Footprint = 1.08 t

CO2eq; Environmental Investment = 0.48 t CO2eq) and the electricity production (12.6

MWh/year per module), environmental benefits (avoided emissions) would compensate

environmental costs (i.e., Carbon Footprint; Environmental Investment) those provided

within a range of 25 and 13 months respectively.

Keywords: blue energy, Life Cycle Assessment, Carbon Footprint, Carbon Intensity of Electricity, environmental

investment

INTRODUCTION

The International Energy Agency (IEA) estimates that in 2017 global energy demand increased by
2.1% compared to previous years and the 72% of that increase has beenmet by deploying fossil fuels
(International Energy Agency, 2018a). The electricity demand has grown by 3.1%, considerably
higher compared to the overall increase in the energy demand. This increased demand resulted in
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an intensification of the global energy-related CO2 emissions by
1.4% in 2017, reaching a historic peak value of 32.5 gigatonnes
(Gt), a detour from the three past years in which global emissions
remained flat (International Energy Agency, 2018a). However,
renewable energies have met a quarter of the global energy
demand growth (International Energy Agency, 2018a).

In order to accomplish the Paris Agreement (United Nations
Framework Convention on Climate Change, 2015), the IEA
flagship publication, World Energy Outlook 2017, foresees
a “Sustainable Development Scenario” (among 240 energy
mix scenarios in 2100) according to which a mixture of
technologies is considered a prerequisite to meet climate
objectives (International Energy Agency, 2017). In this line,
the BP Energy Outlook 2018 foresees, in 2040, an extremely
diversified world energy mix with a significant increase
of renewable energy (BP energy Outlook, 2018). Moreover,
International Renewable Energy Agency (2018) remarked that
renewable energy combined with improved energy efficiency are
the cornerstone of climate solution and, by 2050 the share of
renewable energy in the European Union could grow from about
17% to over 70%.

According to the Intergovernmental Panel on Climate Change
(2011), the use of renewable energy sources is the solution to
avoid greenhouse gas emissions and it can help to increase
energy security, allow energy independency of communities and
decrease air, water and soil pollution (Ellabban et al., 2014;
Magagna and Uihlein, 2015; Melikoglu, 2018; Şener et al., 2018).

Among renewable energy sources, ocean energy represents
the most promising because of the impressive energy potential
stored in oceans (International Renewable Energy Agency, 2014;
Khan et al., 2017). Oceans represent the 70% of Earth surface
(Ressurreiçao et al., 2011) and, capturing the sun’s thermal
energy, they can be considered as the largest solar collectors
(Khan et al., 2017), besides tides driven by the gravitational
pull of the moon and waves generated by the wind. Major
advantages of ocean energies, compared to other renewables,
comprise predictability (Yaakob et al., 2016), availability and
abundance (Homma, 1985) as well as high load factor (Benbouzid
et al., 2017). The theoretical energy potential from oceans has
been estimated to be more than sufficient to cope present
and projected global electricity request (International Renewable
Energy Agency, 2014; Hussain et al., 2017). Estimation of this
potential ranges from 20,000 to 800,000 TWh electricity a year
(International Renewable Energy Agency, 2014) or between 4 and
18 million tons of oil equivalent (toe) (de Andres et al., 2017a,b).

Supporting the deployment of ocean technologies would
result in the accomplishment of recommendations and directives
of the European Union regarding the promotion of renewable
energies (European Commission, 2009; Sannino and Cavicchioli,
2013) and referring to the target set for climate and energy
policies for 2030 and 2050 (European Commission, 2013;
Sannino and Cavicchioli, 2013) and the objectives of the marine
spatial planning and integrated coastal management directive
(European Commission, 2014).

Ocean energy concerns the energy sector included in
the definition of Blue Economy (Union for Mediterranean,
2017). As recognized by the United Nations Environmental
Programme (UNEP): “a worldwide transition to a low-carbon,

resource-efficient Green Economy will not be possible unless
the seas and oceans are a key part of these urgently needed
transformations” (UNEP, 2012). Moreover, the sustainable
development of ocean energy will contribute to pursue the
Sustainable Development Goals (SDGs) (United Nations,
2015) and the Mediterranean Strategy for Sustainable
Development (MSSD) (United Nation Environmental
Programme/Mediterranean Action plan, 2016). In particular, the
deployment of ocean energy would contribute to accomplish the
target 7.2 of the SDG 7, requiring a substantial increase of the
share of renewable energy in the energy mix, and the objectives
4 and 5 of the MSDD, aimed at fostering the transition toward
green and blue economy. The United Nations have declared
the Decade of Ocean Science for Sustainable Development
(2021–2030) in order to enhance sustainable use of oceans
and marine resources and support the development of ocean
economy (United Nations Educational, 2018).

Ocean energy sources include salinity gradient, onshore
and offshore wave energy, tidal and marine currents, ocean
thermal energy, marine biomass, and offshore wind (both
floating and stable) (Lewis et al., 2012; Borthwick, 2016; Hussain
et al., 2017; Melikoglu, 2018). Ocean energy converters exploit
these renewable sources to generate useful energy—commonly
electricity (International Renewable Energy Agency, 2014). To
date, wave and tidal energy converters are at the most advanced
stage (Lewis et al., 2012; International Renewable Energy Agency,
2014; Uihlein and Magagna, 2016). Wave energy technology
development started on 1940 in Japan through the work
of Yoshio Masuada (Falcão, 2010) with a serious academic
attention gained around early 1970s (International Renewable
Energy Agency, 2014). However, the technology development
and proliferation of full-scale prototypes occurred in the last
decades (Cruz, 2007). According to Magagna and Uihlein
(2016), due to their availability and affluence of resources,
wave and tidal energy are likely to mark the most significant
contribution to the electricity production mix in EU in the
near future. It has also been recognized that, wave energy has
the potential to compete with the current use of fossil fuels
thanks to its availability and predictability (Alamian et al., 2017;
Mustapa et al., 2017).

Wave Energy Converters (WEC) concern different
technologies, the 82% of which refers to five types: point
absorber, wave overtopping reservoir, attenuator, oscillating
water column, and oscillating surge (or inverted pendulum)
(International Renewable Energy Agency, 2014; Magagna and
Uihlein, 2015). Inmost of the cases, wave energy is converted into
electricity by means of two steps: wave energy is firstly converted
into a simplified form of mechanical energy (purely potential or
kinetic energy) and then, through a proper power take-off system
(hydro turbine, hydraulic piston, etc.), into electrical energy
(Kim et al., 2017). According to Lewis et al. (2012) more than 50
types of WEC have been conceived and are under development.
However, due to the high cost only few technologies are ready
for the commercial stage (Contestabile et al., 2017a). However,
WECs look to be the most cost-effective systems among blue
energy converters (Contestabile et al., 2017b).

As recognized by International Energy Agency (2018b),
Environmental Impact Assessments (EIA) of ocean energy
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converters are necessary to inform regulators on potential
impacts due to ocean energy deployment. It has also been
highlighted the necessity of environmental monitoring plan
before, during and after the installation in order to minimize
risks (Copping et al., 2013; International Energy Agency, 2018b).
Effects on benthic communities, species-specific response to
habitat changes, entanglement of marine mammals, turtles, fish,
and marine birds are examples of direct environmental impacts
due to ocean energy technologies (Azzellino et al., 2011; Frid
et al., 2012). Moreover, impacts due to building, operating,
maintenance, decommissioning and disposal of ocean energy
converters should be also considered (Sannino and Cavicchioli,
2013; Uihlein and Magagna, 2016). Life Cycle Assessment (LCA)
is widely recognized as useful tool to evaluate environmental
burdens of energy produced from different renewable and non-
renewable sources (Sannino and Cavicchioli, 2013; Amponsah
et al., 2014). To date, only a small number of LCA on ocean
energy converters have been carried out (e.g., Sørensen et al.,
2006; Parker et al., 2007; Rule et al., 2009; Walker and Howell,
2011; Banerjee et al., 2013; Douziech et al., 2016; Uihlein, 2016;
Elginoz and Bas, 2017; López-Ruiz et al., 2018; Thomson et al.,
2019) tackling different aspects, from eco-design to end-of life of
plants and evaluating different potential impacts.

The Interreg Med MAESTRALE is a cooperation project,
co-financed by the European Regional Development Fund,
involving 11 partners from 8 European countries. It aims
to investigate strengths, weaknesses, opportunities and threats
of blue energy technologies in order to inform and support
their deployment in the Mediterranean area. A survey of the
most promising solutions developed in Europe is available
in the MAESTRALE webgis (http://maestrale-webgis.unisi.it).
Among available WEC technologies, OBREC (Overtopping
BReakwater for Energy Conversion), installed in the harbor of
Naples (Italy), is a full-scale WEC prototype integrated into an
existing breakwater. It has been designed to capture overtopping
waves and produce electricity in poor and mild wave climate
(Contestabile et al., 2016, 2017a).

This paper presents results of an LCA applied to OBREC,
in order to evaluate environmental impacts and benefits in
terms of Carbon Footprint. The LCA has been carried out
to provide a measure of environmental impacts of OBREC
implementation in terms of greenhouse gas emission in a real
environment: the harbor of Naples (Italy). Since OBREC is
integrated in an already functioning harbor, we identify and
calculate the environmental investment (in terms of CO2eq)
of renewable electricity production to capture the contribution
of the additional inputs required by that technology to obtain
electricity from an unexploited energy (wave energy in this
case). Besides impacts, this study also focuses on environmental
benefits given by renewable energy production (i.e., variation of
the Carbon Intensity of Electricity of the Italian electricity mix).
The electricity production can be estimated in terms of avoided
emissions. Moreover, assuming that one OBREC module can
replace 3–4 rows of two layers of antifers from the breakwater, the
environmental cost-benefit balance concerns the environmental
investment required to implement OBREC in place of antifers.

MATERIALS AND METHODS

Overtopping BReakwater for Energy
Conversion (OBREC)
The Overtopping BReakwater for Energy Conversion, namely
OBREC, is a system completely embedded in a rubble mound
breakwater designed to exploit wave energy potentials. It converts
the wave overtopping process into potential energy by collecting
seawater, pushed through a frontal ramp, in upper reservoirs
to feed a set of mini hydro-turbines. Electricity is produced
by means of a generator linked to the turbines converting
potential energy of water stored in reservoirs (Contestabile et al.,
2017a). Figure 1 reports the cross-section of OBREC highlighting
geometrical parameters as showed in Contestabile et al. (2016).

The prototype implemented and tested in the harbor of Naples
consists in a single module (5m seafront length) that can be easily

FIGURE 1 | OBREC cross-section (from Contestabile et al., 2016).
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installed by assembling prefabricated elements, replicated and
combined in rows along one side of a pier. The OBREC modules
offer different solutions for the construction or refurbishment
of breakwater systems and can potentially be used to partially
or fully replace typical antifers, such as big stones or concrete
tripods. The structure of one OBRECmodule, made of reinforced
concrete (110 t concrete and 7 t iron), can likely replace 30–36
of 12-ton “antifers,” a kind of cyclopean grooved concrete cubes
with hole (each side is 2m long) or 13–16 42-ton “tetrapods,”
(3.8m high).

The module tested in the harbor of Naples embeds a set
of pico hydro-turbine. The nominal power installed is about
3 kW. Based on ongoing monitoring campaign and numerical
simulation by using a specifically-designed numerical model
(OBRECsim, see Contestabile and Vicinanza, 2018), a 250m
pier in Naples is expected to generate more than 630 MWh/yr,
corresponding to a wave-to-wire efficiency of 13.9%. The
scenario simulated, take into account a new set of low head
turbines, able to work with a wide spectrum of different incident
wave conditions and water levels. Consistently, in this study, we
assume an average electricity production of 12.6 MWh/yr for
an OBREC single module 5m long, in order to provide more
reproducible results and considerations for other poor and mild
wave climate.

Life Cycle Assessment (LCA) of the OBREC
Module
The LCA has been applied in compliance with the International
Standard Organization 14040 (2006a) and International
Standard Organization 14044 (2006b). The life cycle of OBREC
module has divided in three main phases of the production
chain: (1) construction: production of structural elements and
components; (2) building: assembly and on-site installation,

including the transportation of the components to the building
site; (3) maintenance: interventions for periodical check and
maintenance (Figure 2). The end of life phase has not been
included in this assessment, even if lifetime of structures and
different components has been taken into account. Being OBREC
able to replace, in mass terms, 3–4 rows of two layers of antifers
from the breakwater and, considering that the main aim of this
paper is the evaluation of the environmental investment required
to implement OBREC, we assumed that decommission phase
can be considered out of the system boundaries, as it would be
equal both for OBREC and antifers.

The functional unit (FU) selected is represented by one single
module (5m seafront length) embedding the WEC (namely one
module of OBREC). The system boundary includes the main
lifecycle processes from cradle to gate, i.e., from cradle to a fully
operating OBREC module.

Specific data regarding materials and energy needed to
produce structural components (Phase 1) have been estimated
based on metric computations (Contestabile et al., 2016)
and considering main components: foundations, ramps and
reservoirs made in reinforced concrete and pipes in PVC. The
power take-off (PTO) system has been accounted as steel and
PVC that are main materials of the pico hydro-turbine. Materials
for electric connection (generator, stator, box and electrical cable)
have been accounted as steel, PVC, copper, rubber, NdFeB (i.e.,
Neodimio-Ferro-Boro) alloy. A length of 1 km has been assumed
for electric cable. Electricity losses have not been accounted.

The on-site installation (Phase 2) concerns energy use
(electricity and diesel) for machineries (e.g., excavator) and
materials (e.g., wood for the molds). A time span of 1 year
(202 actual days considering work stoppage) for the whole
building phase has been assumed. The average distance from the
production site to the building site was assumed as 40 km for
each component.

FIGURE 2 | Flow chart with phases of the production chain. Phase 1: production of components; Phase 2: on site installation including transport; Phase 3:

maintenance during operation. Gray boxes represent flows and phases outside the system boundaries.
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Maintenance (Phase 3) has been envisioned as 12 trips per
year to the plant (average 30 km each) because there is no need
of heavy interventions for ordinary maintenance. Nevertheless,
the estimated time span for different components (e.g., 60 years
for the concrete structure; 10 years for the turbine; 20 years for
PVC pipes; 50 years for terrestrial cables and 25 years for marine
ones), compared to the lifetime of the OBREC device (estimated
60 years), allowed to account for the replacement of components
through maintenance.

The Life Cycle Inventory is modeled, and Life Cycle Impact
Assessment performed by means of the LCA software tool
SimaPro 8.4.0 (PRé Consultants, 2014). The Ecoinvent v3.1
(Wernet et al., 2016) database has been used for modeling the
Life Cycle Inventory as source of secondary data. Table 1 reports
input flows considered in the Life Cycle Inventory of the OBREC
module, including both primary and secondary data sources.

The characterization method used in this study is the
Global Warming Potential—GWP at the 100 year time horizon
(Intergovernmental Panel on Climate Change, 2013), hereafter
called also Carbon Footprint (CF).

In this analysis we focused the evaluation of the lifecycle
processes and the production of electricity through OBREC
limited to its contribution to climate change. A complete impact
assessment, including other impact categories, will be the scope
of further research.

RESULTS AND DISCUSSIONS

Table 2 reports the energy and material flows per functional unit,
i.e., one OBREC module, including the electricity production
referred to a breakwater installed in poor and mild water climate
in Italy.

The total CF of the OBREC module is 1.08 t CO2eq
per FU is mainly due to construction elements (884.31 kg
CO2eq) and minor contribution by building operations (85.28 kg
CO2eq) and maintenance (113.57 kg CO2eq). Figure 3 shows the
contribution of each single input to the total impacts, in terms of
CO2eq, deriving from the life cycle of the OBREC module.

Most of the impact throughout the production chain of
OBREC is due to the use of materials for the construction of
components (82%), including structural elements, i.e., ramp,
reservoirs, foundations (56%), and the WEC system, especially
electric cables for the connection to the grid (18%). Other impacts
are due to operations for assembling and installing the OBREC
system on site (8%) and its maintenance (10%). These results
are in line with other LCA evaluations regarding ocean energy
technologies (e.g., Dahlsten, 2009; Uihlein, 2016; Thomson et al.,
2019) demonstrating that most of their impacts are related to
materials even beyond the installation and maintenance of the
devices. CF results are closely related to the mass flows (Table 2)
in line with what outlined by Uihlein (2016) regarding the closed

TABLE 1 | Primary and secondary data sources used in the LCA of the OBREC system.

Description Input Utilization phase Primary data Secondary data

Ramp Reinforced concrete Construction (1) Our processinga Ecoinvent database, 2014

Reservoir

Pipes PVC Construction (1) Our processingb Ecoinvent database, 2014

Foundations Reinforced concrete Construction (1) Our processinga Ecoinvent database, 2014

Steel Construction (1) Our processinga Ecoinvent database, 2014

PTO (hydraulic turbines) Steel Construction (1) Our processinga Ecoinvent database, 2014

PVC Construction (1) Our processinga Ecoinvent database, 2014

Generator Steel Construction (1) Our processinga Ecoinvent database, 2014

NdFeB alloy Construction (1) Our processinga Ecoinvent database, 2014

Stator Glass fiber Construction (1) Our processinga Ecoinvent database, 2014

Copper Construction (1) Our processinga Ecoinvent database, 2014

Box Aluminum Construction (1) Our processinga Ecoinvent database, 2014

Electrical cable Copper Construction (1) Our processingb Ecoinvent database, 2014

Rubber Construction (1) Our processingb Ecoinvent database, 2014

Iron Construction (1) Our processingb Ecoinvent database, 2014

PVC Construction (1) Our processingb Ecoinvent database, 2014

Energy Diesel Building (2) Our processingc Ecoinvent database, 2014

Electricity Building (2) Our processingc Ecoinvent database, 2014

Molds Wood Building (2) Our processingc Ecoinvent database, 2014

Transport Lorry Maintenance (3) Our processingd Ecoinvent database, 2014

Transport Passenger car Maintenance (3) Our processing Ecoinvent database, 2014

aOur elaboration based on Contestabile et al. (2016).
bOur processing based on average cable composition.
cOur elaboration based on average data of machineries used in a building site.
dOur processing considering an average distance of 40 km to the building site.

Numbers in brackets in the “utilization phase” column correspond to the steps of production (see Figure 2).
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TABLE 2 | Life Cycle Inventory for the production of the functional unit (i.e., the OBREC module).

Description Material Raw Data Unit LT (year) Value (unit/year)

Input

CONSTRUCTION

Structural

components

Ramp and

reservoir

Concrete 103,969.22 kg 60 1,732.82

Iron 5,497.44 kg 60 91.62

Pipes PVC 54.17 kg 20 2.71

Foundations Concrete 6,476.25 kg 60 107.94

Iron 1,295.25 kg 60 21.59

PTO

components

Hydraulic

turbines

Steel 60.00 kg 10 6.00

PVC 15.00 kg 10 1.50

Electric

connection

Generator Steel 39.50 kg 20 1.98

Ndfeb Alloy 14.40 kg 20 0.72

Stator Glass Fiber 4.30 kg 20 0.22

Copper 6.40 kg 20 0.32

Box Aluminum 15.40 kg 20 0.77

Terrestrial electric

cable

Copper 1,877.00 kg 50 37.54

Rubber 74.00 kg 50 1.48

Iron 2,297.00 kg 50 45.94

PVC 79.00 kg 50 1.58

BUILDING

Energy Diesel 2048.00 kg 60 34.13

Electricity 5374.72 kWh 60 89.58

Molds Wood 212.06 kg 60 0.10

Transportation Transport Lorry - kgkm - 82,297.04

MAINTEINANCE

Transportation Transport Passenger Car - km 1 360

Output Electricity 12.6 MWh 1 12.6

link between environmental impacts and material inputs. In
particular the 56% of the total CF is due to concrete and iron
needed for the foundations and construction of the ramp and
reservoirs; these structural elements accounted for 95% of the
total mass of the OBREC device. Input flows required during the
building phase can be considered negligible (namely diesel and
wood) except for the electricity that is responsible for the 5% of
the total CF of the OBREC device. Finally, the use of a passenger
car for themaintenance operations accounted for 11% of the total
CF of the OBREC.

However, OBREC can be considered an upgrade of a
traditional breakwater, thus we can consider the CF as a sort
of “Environmental Investment” required for implementing a
breakwater integrated with an OBREC module.

The Environmental Investment (EI) has been defined as
the additional environmental impact produced to upgrade
a system to a more integrated state, as stated by Patrizi
et al. (2015) and Saladini et al. (2016). According to this
definition, the environmental investment would specifically refer
to the emissions provided to integrate the WEC system, made
to produce renewable energy as additional function, in the
breakwater, built to protect the port basin as primary function.
Accordingly, processes included in the evaluation of the EI
concerns the construction of WEC elements (generator, stator,
box, and electric connection), their on-site assembling and

maintenance, while we can assume that structural materials
properly belong to the breakwater system (the OBREC module
replaces 30–36 antifers likewise made of concrete with almost the
same mass) and must not be taken into account.

Based on this observation the EI required for upgrading a
breakwater with an OBRECmodule is represented by the portion
of CF of the OBREC module assessed above (i.e., 1.08 t CO2eq)
considering only the emission due to the implementation of the
WEC system. In this way, the EI of OBREC is 0.48 t CO2eq, i.e.,
44% of total CF (Table 3).

The EI evaluation highlighted that the majority of CO2eq
emissions are still due to construction elements being responsible
for 59% of the total EI (i.e., 0.28 t CO2eq) of one module
of OBREC. While the building and maintenance phases are
responsible for the 18 and 23%, respectively of the total EI
(i.e., 85.28 kg CO2eq and 113.57 kg CO2eq). In particular, 51%
of the emissions are due to the electrical connection, more
specifically to the terrestrial cable because of the copper and iron
components. Therefore, a possible implementation to decrease
emissions of OBREC can be represented by the use of electrical
connection with higher environmental performances.

OBREC is expected to produce electricity with higher
environmental performances then electricity produced from
conventional resources. Results from the LCA allow for
evaluating the Carbon Intensity of Electricity (CIE) of OBREC
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FIGURE 3 | Breakdown of the CF of the OBREC module by single input flows (bottom). The percentage contribution of each construction element is reported in detail

(up). Colors represent three Life Cycle Phases (Legend: blue=construction; orange=building; gray=maintenance).

as the ratio between CO2eq emitted (CF) and the produced
electricity (Moro and Lonza, 2018). This ratio can be included in
the list of performance indicators: the lower its value, the better
the performance (Ang and Su, 2016).

The annual productivity of electricity is highly dependent
on the marine characteristic of the site in which OBREC is
implemented. In this paper data on annual productivity has
been taken from a study carried out for the extension of
the Duca D’Aosta pier in Naples, considering an electricity
production equal to 12.6 MWh/yr for one OBREC module (5m
length). Obviously, a detailed wave resource assessment would
be necessary.

The CIE calculated as the amount of emissions divided by
the electricity production of one OBREC module on a yearly
basis reported a value of 0.086 t CO2eq/MWh when the total
CF is considered. However, the estimation of the EI allowed for
evaluating the CIE of OBREC in a more representative way. CIE
calculated as the amount of invested emissions (EI) divided by
the electricity production of oneOBRECmodule on a yearly basis
showed a value of 0.037 t CO2eq/MWh. Compared to CIE values
of other renewable energies, we can see that the CIE of OBREC
is quite similar to that of hydroelectric reservoir being CIE 0.01 t
CO2eq/MWh (Sovacool, 2008). Both these values are much lower
than the Italian electricity grid mix, i.e., 0.578 t CO2eq/MWh of
electricity produced (Ecoinvent, 2014).

In order to assess environmental benefits, we considered
avoided emissions due to the implementation of OBREC based
on CIE, that corresponds to 0.49 t CO2eq/MWh (based on CF)
and 0.54 t CO2eq/MWh (based on EI) per renewable electricity

TABLE 3 | Carbon Footprint compared to the “environmental investment” in terms

of t CO2eq: “CF” refers to the comprehensive impact of the OBREC module;

“investment” specifically concerns emissions for integrating the WEC system in

the breakwater system instead of using traditional antifers.

CF

(t CO2eq)

Investment

(t CO2eq)

Construction 0.86 0.28

Building 0.09 0.09

Maintenance 0.11 0.11

Total 1.06 0.48

produced. The avoided emissions in producing 12.6 MWh per
year therefore range from 6.20 to 6.81 t CO2eq/yr per OBREC
module. Also, the carbon payback time for one module of
OBREC (namely the time period of operation that is necessary
to compensates emissions of total CF) was estimated to be 25
months. Focusing on the real EI the carbon payback time has
been assessed to be 13 months.

This paper presents results of LCA of an innovative plant
to produce renewable electricity by deploying wave energy
obtained through an upgrading of a breakwater. Even if results of
environmental benefits are very site specific (i.e., Naples, Italy),
we can maintain that CF and more properly EI assessment are
a prerequisite to foster the blue energy deployment. According
to Pisacane et al. (2018) preliminary assessment on potential
impacts are necessary to inform policy makers before any blue
energy implementation (International Energy Agency, 2018b).
Results of EI of OBREC, in fact, represented a first step for future
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research, these values will not be subject to variability on the
contrary of wave potentials. While wave potential is linked to the
localization, emissions necessary to upgrade a breakwater are not.

The crucial point in this evaluation is that a planned
investment would allow for the conversion of energy embedded
in waves into renewable electricity. We can interpret WEC
systems integrated in harbors as a concretization of Herman
Daly’s quasi sustainability principle (Daly, 1990). According to
Daly, quasi sustainability is a transition process during which
the investment of non-renewable resources (such as structural
components of the OBREC module) is a necessary condition to
foster the production of a renewable resource, e.g., electricity
(Bastianoni et al., 2009).

Finally, deploying untapped potential energy of waves can be
viewed as a proper solution to prevent the so-called “tragedy
of the commons” (Hardin, 1968). As affirmed by Lloyd (2007):
“anthropogenic global warming and oil depletion can be seen as
the traditional common grazing of the Hardin’s paper” on the
“tragedy of the commons.”

CONCLUSIONS

This paper presents an LCA of aWave Energy Converter (WEC),
namely OBREC (OBREC module installed and tested in the
harbor of Naples) focusing on the Greenhouse Gases emission
assessment, in order to evaluate environmental impacts and
benefits of this blue energy technology. The implementation of a
single module of OBREC provides 1.08 kg CO2eq/yr, considering
the production and transport of constructive elements, their on-
site assembling and maintenance. Most of the impact is due
to structural parts, made of reinforced concrete; nevertheless,
an OBREC module can replace several traditional antifers (i.e.,
artificial rocks for the breakwater armor layer).

This observation allowed for making assumptions for
evaluating the Carbon Intensity of Electricity (CIE). The
Environmental Investment can be defined as the emission
provided to install a fully operating WEC system into the

breakwater in place of traditional antifers and therefore add the
function of producing renewable energy to that of protecting
the port basin. Based on this assumption, the impact of the
WEC is 0.48 t CO2eq/yr, i.e., 44% of the total CF, and the CIE
is 0.037 t CO2eq/kWh. This value is much lower (i.e., 94%) than
the CIE of current Italian electricity mix. The potential reduced
CO2 emission due to the deployment of marine renewable
energy for the electricity production have been considered as
an “opportunity” for the blue energy technology development
within a SWOT (Strengths, Weaknesses, Opportunities, and
Threats) analysis regarding the deployment of Marine Energy
in the Mediterranean Area carried out by Goffetti et al.
(2018). Threats have been highlighted in economic and
legal aspects that slow down the implementation of blue
energy technologies coupled with lack of economic incentives
(Goffetti et al., 2018).

This study demonstrates that breakwater integrated WECs,
such as OBREC, are profitable solutions for exploiting renewable
sources in the marine environment. Despite these are at the early
stage, the environmental performance of existing devices and
prototypes, based on a lifecycle approach, looks promising and
supports the opportunity to further develop and test innovative
blue energy technologies.
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